Skip to main content
The Yale Journal of Biology and Medicine logoLink to The Yale Journal of Biology and Medicine
. 1997 Jul-Aug;70(4):311–322.

Recent advances in the field of renal potassium excretion: what can we learn from potassium channels?

G H Giebisch 1
PMCID: PMC2589336  PMID: 9626751

Abstract

Potassium channels in the apical and basolateral membranes of tubule cells serve several important functions. They contribute to the generation of the cell-negative potential, mediate volume reductions following cell swelling and play a key role in secretion of potassium in both the thick ascending limb of Henle's loop and principal tubule cells of the initial and cortical collecting tubules. Secretion of potassium occurs via a well-defined class of potassium channels distinguished by their low single channel conductance, mild inward rectification, high sensitivity to inhibition by low pH, millimolar concentrations of ATP, arachidonic acid and PKC, and stimulation by vasopressin and pretreatment with a high potassium diet. Genes encoding several isoforms of this channel have been cloned and the proteins located to the apical membranes of cells lining the thick ascending limb of Henle's loop and the collecting tubules, and progress made concerning their structure-function relationship.

Full text

PDF
311

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Desir G. V. Molecular characterization of voltage and cyclic nucleotide-gated potassium channels in kidney. Kidney Int. 1995 Oct;48(4):1031–1035. doi: 10.1038/ki.1995.386. [DOI] [PubMed] [Google Scholar]
  2. Doucet A., Marsy S. Characterization of K-ATPase activity in distal nephron: stimulation by potassium depletion. Am J Physiol. 1987 Sep;253(3 Pt 2):F418–F423. doi: 10.1152/ajprenal.1987.253.3.F418. [DOI] [PubMed] [Google Scholar]
  3. Giebisch G. Renal potassium channels: an overview. Kidney Int. 1995 Oct;48(4):1004–1009. doi: 10.1038/ki.1995.382. [DOI] [PubMed] [Google Scholar]
  4. Giebisch G., Wang W. Potassium transport: from clearance to channels and pumps. Kidney Int. 1996 Jun;49(6):1624–1631. doi: 10.1038/ki.1996.236. [DOI] [PubMed] [Google Scholar]
  5. Greger R. Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Physiol Rev. 1985 Jul;65(3):760–797. doi: 10.1152/physrev.1985.65.3.760. [DOI] [PubMed] [Google Scholar]
  6. Hebert S. C. An ATP-regulated, inwardly rectifying potassium channel from rat kidney (ROMK). Kidney Int. 1995 Oct;48(4):1010–1016. doi: 10.1038/ki.1995.383. [DOI] [PubMed] [Google Scholar]
  7. Hebert S. C., Andreoli T. E. Control of NaCl transport in the thick ascending limb. Am J Physiol. 1984 Jun;246(6 Pt 2):F745–F756. doi: 10.1152/ajprenal.1984.246.6.F745. [DOI] [PubMed] [Google Scholar]
  8. Hebert S. C., Andreoli T. E. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: II. determinants of the ADH-mediated increases in transepithelial voltage and in net Cl-absorption. J Membr Biol. 1984;80(3):221–233. doi: 10.1007/BF01868440. [DOI] [PubMed] [Google Scholar]
  9. Hirsch J., Schlatter E. K+ channels in the basolateral membrane of rat cortical collecting duct. Pflugers Arch. 1993 Sep;424(5-6):470–477. doi: 10.1007/BF00374910. [DOI] [PubMed] [Google Scholar]
  10. Ho K., Nichols C. G., Lederer W. J., Lytton J., Vassilev P. M., Kanazirska M. V., Hebert S. C. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature. 1993 Mar 4;362(6415):31–38. doi: 10.1038/362031a0. [DOI] [PubMed] [Google Scholar]
  11. Horisberger J. D., Giebisch G. Voltage dependence of the basolateral membrane conductance in the Amphiuma collecting tubule. J Membr Biol. 1988 Nov;105(3):257–263. doi: 10.1007/BF01871002. [DOI] [PubMed] [Google Scholar]
  12. Kubokawa M., McNicholas C. M., Higgins M. A., Wang W., Giebisch G. Regulation of ATP-sensitive K+ channel by membrane-bound protein phosphatases in rat principal tubule cell. Am J Physiol. 1995 Sep;269(3 Pt 2):F355–F362. doi: 10.1152/ajprenal.1995.269.3.F355. [DOI] [PubMed] [Google Scholar]
  13. Kubokawa M., Wang W., McNicholas C. M., Giebisch G. Role of Ca2+/CaMK II in Ca(2+)-induced K+ channel inhibition in rat CCD principal cell. Am J Physiol. 1995 Feb;268(2 Pt 2):F211–F219. doi: 10.1152/ajprenal.1995.268.2.F211. [DOI] [PubMed] [Google Scholar]
  14. Ling B. N., Eaton D. C. Cyclosporin A inhibits apical secretory K+ channels in rabbit cortical collecting tubule principal cells. Kidney Int. 1993 Nov;44(5):974–984. doi: 10.1038/ki.1993.339. [DOI] [PubMed] [Google Scholar]
  15. Lu M., Giebisch G., Wang W. Nitric oxide links the apical Na+ transport to the basolateral K+ conductance in the rat cortical collecting duct. J Gen Physiol. 1997 Dec;110(6):717–726. doi: 10.1085/jgp.110.6.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lu M., Giebisch G., Wang W. Nitric oxide-induced hyperpolarization stimulates low-conductance Na+ channel of rat CCD. Am J Physiol. 1997 Apr;272(4 Pt 2):F498–F504. doi: 10.1152/ajprenal.1997.272.4.F498. [DOI] [PubMed] [Google Scholar]
  17. Lu M., Wang W. H. Nitric oxide regulates the low-conductance K+ channel in basolateral membrane of cortical collecting duct. Am J Physiol. 1996 May;270(5 Pt 1):C1336–C1342. doi: 10.1152/ajpcell.1996.270.5.C1336. [DOI] [PubMed] [Google Scholar]
  18. MALNIC G., KLOSE R. M., GIEBISCH G. MICROPUNCTURE STUDY OF RENAL POTASSIUM EXCRETION IN THE RAT. Am J Physiol. 1964 Apr;206:674–686. doi: 10.1152/ajplegacy.1964.206.4.674. [DOI] [PubMed] [Google Scholar]
  19. McNicholas C. M., Guggino W. B., Schwiebert E. M., Hebert S. C., Giebisch G., Egan M. E. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8083–8088. doi: 10.1073/pnas.93.15.8083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McNicholas C. M., Yang Y., Giebisch G., Hebert S. C. Molecular site for nucleotide binding on an ATP-sensitive renal K+ channel (ROMK2). Am J Physiol. 1996 Aug;271(2 Pt 2):F275–F285. doi: 10.1152/ajprenal.1996.271.2.F275. [DOI] [PubMed] [Google Scholar]
  21. Sackin H. Mechanosensitive channels. Annu Rev Physiol. 1995;57:333–353. doi: 10.1146/annurev.ph.57.030195.002001. [DOI] [PubMed] [Google Scholar]
  22. Schlatter E., Schafer J. A. Electrophysiological studies in principal cells of rat cortical collecting tubules. ADH increases the apical membrane Na+-conductance. Pflugers Arch. 1987 Jun;409(1-2):81–92. doi: 10.1007/BF00584753. [DOI] [PubMed] [Google Scholar]
  23. Wang W. H., Geibel J., Giebisch G. Mechanism of apical K+ channel modulation in principal renal tubule cells. Effect of inhibition of basolateral Na(+)-K(+)-ATPase. J Gen Physiol. 1993 May;101(5):673–694. doi: 10.1085/jgp.101.5.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wang W. H., Giebisch G. Dual modulation of renal ATP-sensitive K+ channel by protein kinases A and C. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9722–9725. doi: 10.1073/pnas.88.21.9722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wang W. H., McNicholas C. M., Segal A. S., Giebisch G. A novel approach allows identification of K channels in the lateral membrane of rat CCD. Am J Physiol. 1994 May;266(5 Pt 2):F813–F822. doi: 10.1152/ajprenal.1994.266.5.F813. [DOI] [PubMed] [Google Scholar]
  26. Wang W. H. Regulation of the hyperpolarization-activated K+ channel in the lateral membrane of the cortical collecting duct. J Gen Physiol. 1995 Jul;106(1):25–43. doi: 10.1085/jgp.106.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang W. H., Schwab A., Giebisch G. Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule. Am J Physiol. 1990 Sep;259(3 Pt 2):F494–F502. doi: 10.1152/ajprenal.1990.259.3.F494. [DOI] [PubMed] [Google Scholar]
  28. Wang W. H. Two types of K+ channel in thick ascending limb of rat kidney. Am J Physiol. 1994 Oct;267(4 Pt 2):F599–F605. doi: 10.1152/ajprenal.1994.267.4.F599. [DOI] [PubMed] [Google Scholar]
  29. Wang W. H. View of K+ secretion through the apical K channel of cortical collecting duct. Kidney Int. 1995 Oct;48(4):1024–1030. doi: 10.1038/ki.1995.385. [DOI] [PubMed] [Google Scholar]
  30. Wang W., Cassola A., Giebisch G. Arachidonic acid inhibits the secretory K+ channel of cortical collecting duct of rat kidney. Am J Physiol. 1992 Apr;262(4 Pt 2):F554–F559. doi: 10.1152/ajprenal.1992.262.4.F554. [DOI] [PubMed] [Google Scholar]
  31. Wang W., Giebisch G. Dual effect of adenosine triphosphate on the apical small conductance K+ channel of the rat cortical collecting duct. J Gen Physiol. 1991 Jul;98(1):35–61. doi: 10.1085/jgp.98.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang W., Hebert S. C., Giebisch G. Renal K+ channels: structure and function. Annu Rev Physiol. 1997;59:413–436. doi: 10.1146/annurev.physiol.59.1.413. [DOI] [PubMed] [Google Scholar]
  33. Wang W., Sackin H., Giebisch G. Renal potassium channels and their regulation. Annu Rev Physiol. 1992;54:81–96. doi: 10.1146/annurev.ph.54.030192.000501. [DOI] [PubMed] [Google Scholar]
  34. Weinstein A. M. Modeling the proximal tubule: complications of the paracellular pathway. Am J Physiol. 1988 Mar;254(3 Pt 2):F297–F305. doi: 10.1152/ajprenal.1988.254.3.F297. [DOI] [PubMed] [Google Scholar]
  35. Wingo C. S. Active proton secretion and potassium absorption in the rabbit outer medullary collecting duct. Functional evidence for proton-potassium-activated adenosine triphosphatase. J Clin Invest. 1989 Jul;84(1):361–365. doi: 10.1172/JCI114165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Xu Z. C., Yang Y., Hebert S. C. Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase. J Biol Chem. 1996 Apr 19;271(16):9313–9319. doi: 10.1074/jbc.271.16.9313. [DOI] [PubMed] [Google Scholar]

Articles from The Yale Journal of Biology and Medicine are provided here courtesy of Yale Journal of Biology and Medicine

RESOURCES