Skip to main content
The Yale Journal of Biology and Medicine logoLink to The Yale Journal of Biology and Medicine
. 1997 Jul-Aug;70(4):331–340.

Electrogenicity of Na(+)-coupled bile acid transporters.

S A Weinman 1
PMCID: PMC2589348  PMID: 9626753

Abstract

The Na(+)-bile acid cotransporters NTCP and ASBT are largely responsible for the Na(+)-dependent bile acid uptake in hepatocytes and intestinal epithelial cells, respectively. This review discusses the experimental methods available for demonstrating electrogenicity and examines the accumulating evidence that coupled transport by each of these bile acid transporters is electrogenic. The evidence includes measurements of transport-associated currents by patch clamp electrophysiological techniques, as well as direct measurement of fluorescent bile acid transport rates in whole cell patch clamped, voltage clamped cells. The results support a Na+:bile acid coupling stoichiometry of 2:1.

Full text

PDF
331

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anwer M. S., Hegner D. Effect of Na on bile acid uptake by isolated rat hepatocytes. Evidence for a heterogeneous system. Hoppe Seylers Z Physiol Chem. 1978 Feb;359(2):181–192. [PubMed] [Google Scholar]
  2. Barnard J. A., Ghishan F. K. Taurocholate transport by human ileal brush border membrane vesicles. Gastroenterology. 1987 Nov;93(5):925–933. doi: 10.1016/0016-5085(87)90553-1. [DOI] [PubMed] [Google Scholar]
  3. Barnard J. A., Ghishan F. K., Wilson F. A. Ontogenesis of taurocholate transport by rat ileal brush border membrane vesicles. J Clin Invest. 1985 Mar;75(3):869–873. doi: 10.1172/JCI111785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bear C. E., Davison J. S., Shaffer E. A. Sodium-dependent taurocholate uptake by isolated rat hepatocytes occurs through an electrogenic mechanism. Biochim Biophys Acta. 1987 Oct 2;903(2):388–394. doi: 10.1016/0005-2736(87)90230-6. [DOI] [PubMed] [Google Scholar]
  5. Bear C., Shaffer E. A., Davison J. S. The electrogenic effect of sodium taurocholate on rat hepatocyte couplets. Proc West Pharmacol Soc. 1987;30:109–111. [PubMed] [Google Scholar]
  6. Bergman J., Zaafrani M., Bergman C. Electrophysiological investigation of the amino acid carrier selectivity in epithelial cells from Xenopus embryo. J Membr Biol. 1989 Nov;111(3):241–251. doi: 10.1007/BF01871009. [DOI] [PubMed] [Google Scholar]
  7. Bomzon A., Ljubuncic P. Bile acids as endogenous vasodilators? Biochem Pharmacol. 1995 Mar 1;49(5):581–589. doi: 10.1016/0006-2952(94)00428-o. [DOI] [PubMed] [Google Scholar]
  8. Boorer K. J., Frommer W. B., Bush D. R., Kreman M., Loo D. D., Wright E. M. Kinetics and specificity of a H+/amino acid transporter from Arabidopsis thaliana. J Biol Chem. 1996 Jan 26;271(4):2213–2220. doi: 10.1074/jbc.271.4.2213. [DOI] [PubMed] [Google Scholar]
  9. Duffy M. C., Blitzer B. L., Boyer J. L. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles. J Clin Invest. 1983 Oct;72(4):1470–1481. doi: 10.1172/JCI111103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edmondson J. W., Miller B. A., Lumeng L. Effect of glucagon on hepatic taurocholate uptake: relationship to membrane potential. Am J Physiol. 1985 Oct;249(4 Pt 1):G427–G433. doi: 10.1152/ajpgi.1985.249.4.G427. [DOI] [PubMed] [Google Scholar]
  11. Fitz J. G., Scharschmidt B. F. Regulation of transmembrane electrical potential gradient in rat hepatocytes in situ. Am J Physiol. 1987 Jan;252(1 Pt 1):G56–G64. doi: 10.1152/ajpgi.1987.252.1.G56. [DOI] [PubMed] [Google Scholar]
  12. Grüne S., Meng X. J., Weinman S. A. cAMP stimulates fluorescent bile acid uptake into hepatocytes by membrane hyperpolarization. Am J Physiol. 1996 Feb;270(2 Pt 1):G339–G346. doi: 10.1152/ajpgi.1996.270.2.G339. [DOI] [PubMed] [Google Scholar]
  13. Hagenbuch B., Stieger B., Foguet M., Lübbert H., Meier P. J. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10629–10633. doi: 10.1073/pnas.88.23.10629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Inoue M., Kinne R., Tran T., Arias I. M. Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system. J Clin Invest. 1984 Mar;73(3):659–663. doi: 10.1172/JCI111257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Inoue M., Kinne R., Tran T., Arias I. M. Taurocholate transport by rat liver sinusoidal membrane vesicles: evidence of sodium cotransport. Hepatology. 1982 Sep-Oct;2(5):572–579. doi: 10.1002/hep.1840020510. [DOI] [PubMed] [Google Scholar]
  16. Jauch P., Petersen O. H., Läuger P. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: I. Tight-seal whole-cell recordings. J Membr Biol. 1986;94(2):99–115. doi: 10.1007/BF01871191. [DOI] [PubMed] [Google Scholar]
  17. Kimmich G. A. Membrane potentials and the mechanism of intestinal Na(+)-dependent sugar transport. J Membr Biol. 1990 Mar;114(1):1–27. doi: 10.1007/BF01869381. [DOI] [PubMed] [Google Scholar]
  18. Kramer W., Wess G. Bile acid transport systems as pharmaceutical targets. Eur J Clin Invest. 1996 Sep;26(9):715–732. doi: 10.1111/j.1365-2362.1996.tb02383.x. [DOI] [PubMed] [Google Scholar]
  19. Lidofsky S. D., Fitz J. G., Weisiger R. A., Scharschmidt B. F. Hepatic taurocholate uptake is electrogenic and influenced by transmembrane potential difference. Am J Physiol. 1993 Mar;264(3 Pt 1):G478–G485. doi: 10.1152/ajpgi.1993.264.3.G478. [DOI] [PubMed] [Google Scholar]
  20. Lücke H., Stange G., Kinne R., Murer H. Taurocholate--sodium co-transport by brush-border membrane vesicles isolated from rat ileum. Biochem J. 1978 Sep 15;174(3):951–958. doi: 10.1042/bj1740951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maglova L. M., Jackson A. M., Meng X. J., Carruth M. W., Schteingart C. D., Ton-Nu H. T., Hofmann A. F., Weinman S. A. Transport characteristics of three fluorescent conjugated bile acid analogs in isolated rat hepatocytes and couplets. Hepatology. 1995 Aug;22(2):637–647. [PubMed] [Google Scholar]
  22. Meier P. J., St Meier-Abt A., Barrett C., Boyer J. L. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier. J Biol Chem. 1984 Aug 25;259(16):10614–10622. [PubMed] [Google Scholar]
  23. Panayotova-Heiermann M., Loo D. D., Wright E. M. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. J Biol Chem. 1995 Nov 10;270(45):27099–27105. doi: 10.1074/jbc.270.45.27099. [DOI] [PubMed] [Google Scholar]
  24. Parent L., Supplisson S., Loo D. D., Wright E. M. Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. J Membr Biol. 1992 Jan;125(1):49–62. doi: 10.1007/BF00235797. [DOI] [PubMed] [Google Scholar]
  25. Parent L., Supplisson S., Loo D. D., Wright E. M. Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J Membr Biol. 1992 Jan;125(1):63–79. doi: 10.1007/BF00235798. [DOI] [PubMed] [Google Scholar]
  26. Rouse D. J., Lack L. Ion requirements for taurocholate transport by ileal brush border membrane vesicles. Life Sci. 1979 Jul 2;25(1):45–52. doi: 10.1016/0024-3205(79)90488-0. [DOI] [PubMed] [Google Scholar]
  27. Shneider B. L., Dawson P. A., Christie D. M., Hardikar W., Wong M. H., Suchy F. J. Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J Clin Invest. 1995 Feb;95(2):745–754. doi: 10.1172/JCI117722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Villalobo A. Reconstitution of ion-motive transport ATPases in artificial lipid membranes. Biochim Biophys Acta. 1990 May 15;1017(1):1–48. doi: 10.1016/0005-2728(90)90176-5. [DOI] [PubMed] [Google Scholar]
  29. Weinman S. A., Maglova L. M. Free concentrations of intracellular fluorescent anions determined by cytoplasmic dialysis of isolated hepatocytes. Am J Physiol. 1994 Nov;267(5 Pt 1):G922–G931. doi: 10.1152/ajpgi.1994.267.5.G922. [DOI] [PubMed] [Google Scholar]
  30. Weinman S. A., Weeks R. P. Electrogenicity of Na-coupled bile salt transport in isolated rat hepatocytes. Am J Physiol. 1993 Jul;265(1 Pt 1):G73–G80. doi: 10.1152/ajpgi.1993.265.1.G73. [DOI] [PubMed] [Google Scholar]
  31. Wilson F. A., Treanor L. L. Glycodeoxycholate transport in brush border membrane vesicles isolated from rat jejunum and ileum. Biochim Biophys Acta. 1979 Jul 5;554(2):430–440. doi: 10.1016/0005-2736(79)90382-1. [DOI] [PubMed] [Google Scholar]
  32. Wong M. H., Oelkers P., Craddock A. L., Dawson P. A. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem. 1994 Jan 14;269(2):1340–1347. [PubMed] [Google Scholar]
  33. Wright E. M. The intestinal Na+/glucose cotransporter. Annu Rev Physiol. 1993;55:575–589. doi: 10.1146/annurev.ph.55.030193.003043. [DOI] [PubMed] [Google Scholar]

Articles from The Yale Journal of Biology and Medicine are provided here courtesy of Yale Journal of Biology and Medicine

RESOURCES