Skip to main content
The Yale Journal of Biology and Medicine logoLink to The Yale Journal of Biology and Medicine
. 1990 Nov-Dec;63(6):581–591.

Catecholamine cardiomyopathy: review and analysis of pathogenetic mechanisms.

J P Jiang 1, S E Downing 1
PMCID: PMC2589396  PMID: 2092415

Abstract

Catecholamines given in high concentrations produce myocardial damage in several mammalian species. The histological changes are similar to those found in patients given large amounts of pressor agents and in those who develop pheochromocytomas. They include myofiber necrosis, myofibrillar degeneration, and mononuclear leukocytic infiltration. Cardiac function is significantly impaired. Endogenous release of catecholamines can also induce myocardial injury in rabbits infused with tyramine. Anatomic and functional abnormalities described in various models of catecholamine cardiomyopathy are summarized. The several major theories regarding pathogenesis are reviewed. Recent data suggesting that O2-derived free radical generation is involved are discussed.

Full text

PDF
581

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akizuki S., Yoshida S., Chambers D. E., Eddy L. J., Parmley L. F., Yellon D. M., Downey J. M. Infarct size limitation by the xanthine oxidase inhibitor, allopurinol, in closed-chest dogs with small infarcts. Cardiovasc Res. 1985 Nov;19(11):686–692. doi: 10.1093/cvr/19.11.686. [DOI] [PubMed] [Google Scholar]
  2. Bando K., Tago M., Teramoto S. Prevention of free radical-induced myocardial injury by allopurinol. Experimental study in cardiac preservation and transplantation. J Thorac Cardiovasc Surg. 1988 Mar;95(3):465–473. [PubMed] [Google Scholar]
  3. Brown J. M., Terada L. S., Grosso M. A., Whitmann G. J., Velasco S. E., Patt A., Harken A. H., Repine J. E. Xanthine oxidase produces hydrogen peroxide which contributes to reperfusion injury of ischemic, isolated, perfused rat hearts. J Clin Invest. 1988 Apr;81(4):1297–1301. doi: 10.1172/JCI113448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chambers D. E., Parks D. A., Patterson G., Roy R., McCord J. M., Yoshida S., Parmley L. F., Downey J. M. Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol. 1985 Feb;17(2):145–152. doi: 10.1016/s0022-2828(85)80017-1. [DOI] [PubMed] [Google Scholar]
  5. Chambers D. J., Braimbridge M. V., Hearse D. J. Free radicals and cardioplegia: allopurinol and oxypurinol reduce myocardial injury following ischemic arrest. Ann Thorac Surg. 1987 Sep;44(3):291–297. doi: 10.1016/s0003-4975(10)62076-0. [DOI] [PubMed] [Google Scholar]
  6. Chen V., Downing S. E. Preservation of cardiac metabolic capacity after acute catecholamine injury. Am J Physiol. 1990 Jan;258(1 Pt 2):H101–H106. doi: 10.1152/ajpheart.1990.258.1.H101. [DOI] [PubMed] [Google Scholar]
  7. Cohen G., Heikkila R. E. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem. 1974 Apr 25;249(8):2447–2452. [PubMed] [Google Scholar]
  8. Csapó Z., Dusek J., Rona G. Early alterations of the cardiac muscle cells in isoproterenol-induced necrosis. Arch Pathol. 1972 Apr;93(4):356–365. [PubMed] [Google Scholar]
  9. DeWall R. A., Vasko K. A., Stanley E. L., Kezdi P. Responses of the ischemic myocardium to allopurinol. Am Heart J. 1971 Sep;82(3):362–370. doi: 10.1016/0002-8703(71)90302-4. [DOI] [PubMed] [Google Scholar]
  10. Dhalla N. S., Yates J. C., Lee S. L., Singh A. Functional and subcellular changes in the isolated rat heart perfused with oxidized isoproterenol. J Mol Cell Cardiol. 1978 Jan;10(1):31–41. doi: 10.1016/0022-2828(78)90004-4. [DOI] [PubMed] [Google Scholar]
  11. Downing S. E., Chen V. Myocardial injury following endogenous catecholamine release in rabbits. J Mol Cell Cardiol. 1985 Apr;17(4):377–387. doi: 10.1016/s0022-2828(85)80137-1. [DOI] [PubMed] [Google Scholar]
  12. Downing S. E., Lee J. C. Contribution of alpha-adrenoceptor activation to the pathogenesis of norepinephrine cardiomyopathy. Circ Res. 1983 Apr;52(4):471–478. doi: 10.1161/01.res.52.4.471. [DOI] [PubMed] [Google Scholar]
  13. Downing S. E., Lee J. C. Effects of insulin on experimental catecholamine cardiomyopathy. Am J Pathol. 1978 Nov;93(2):339–352. [PMC free article] [PubMed] [Google Scholar]
  14. Edwards N. L., Recker D., Airozo D., Fox I. H. Enhanced purine salvage during allopurinol therapy: an important pharmacologic property in humans. J Lab Clin Med. 1981 Nov;98(5):673–683. [PubMed] [Google Scholar]
  15. Engler R. L. Free radical and granulocyte-mediated injury during myocardial ischemia and reperfusion. Am J Cardiol. 1989 Mar 7;63(10):19E–23E. doi: 10.1016/0002-9149(89)90225-7. [DOI] [PubMed] [Google Scholar]
  16. Ferrans V. J., Hibbs R. G., Walsh J. J., Burch G. E. Histochemical and electron microscopical studies on the cardiac necroses produced by sympathomimetic agents. Ann N Y Acad Sci. 1969 Jan 31;156(1):309–332. doi: 10.1111/j.1749-6632.1969.tb16737.x. [DOI] [PubMed] [Google Scholar]
  17. Fleckenstein A., Janke J., Döring H. J., Pachinger O. Ca overload as the determinant factor in the production of catecholamine-induced myocardial lesions. Recent Adv Stud Cardiac Struct Metab. 1973;2:455–466. [PubMed] [Google Scholar]
  18. Fripp R. R., Lee J. C., Downing S. E. Inotropic responsiveness of the heart in catecholamine cardiomyopathy. Am Heart J. 1981 Jan;101(1):17–21. doi: 10.1016/0002-8703(81)90378-1. [DOI] [PubMed] [Google Scholar]
  19. Grum C. M., Ketai L. H., Myers C. L., Shlafer M. Purine efflux after cardiac ischemia: relevance to allopurinol cardioprotection. Am J Physiol. 1987 Feb;252(2 Pt 2):H368–H373. doi: 10.1152/ajpheart.1987.252.2.H368. [DOI] [PubMed] [Google Scholar]
  20. HANDFORTH C. P. Isoproterenol-induced myocardial infarction in animals. Arch Pathol. 1962 Feb;73:161–165. [PubMed] [Google Scholar]
  21. HOAK J. C., CONNOR W. E., ECKSTEIN J. W., WARNER E. D. FATTY ACID-INDUCED THROMBOSIS AND DEATH: MECHANISMS AND PREVENTION. J Lab Clin Med. 1964 May;63:791–800. [PubMed] [Google Scholar]
  22. Haft J. I. Cardiovascular injury induced by sympathetic catecholamines. Prog Cardiovasc Dis. 1974 Jul-Aug;17(1):73–86. doi: 10.1016/0033-0620(74)90039-5. [DOI] [PubMed] [Google Scholar]
  23. Haft J. I., Fani K. Intravascular platelet aggregation in the heart induced by stress. Circulation. 1973 Feb;47(2):353–358. doi: 10.1161/01.cir.47.2.353. [DOI] [PubMed] [Google Scholar]
  24. Haft J. I., Fani K. Stress and the induction of intravascular platelet aggregation in the heart. Circulation. 1973 Jul;48(1):164–169. doi: 10.1161/01.cir.48.1.164. [DOI] [PubMed] [Google Scholar]
  25. Haft J. I., Gershengorn K., Kranz P. D., Oestreicher R. Protection against epinephrine-induced myocardial necrosis by drugs that inhibit platelet aggregation. Am J Cardiol. 1972 Dec;30(8):838–843. doi: 10.1016/0002-9149(72)90008-2. [DOI] [PubMed] [Google Scholar]
  26. Haft J. I., Kranz P. D., Albert F. J., Fani K. Intravascular platelet aggregation in the heart induced by norepinephrine. Microscopic studies. Circulation. 1972 Oct;46(4):698–708. doi: 10.1161/01.cir.46.4.698. [DOI] [PubMed] [Google Scholar]
  27. Hearse D. J., Manning A. S., Downey J. M., Yellon D. M. Xanthine oxidase: a critical mediator of myocardial injury during ischemia and reperfusion? Acta Physiol Scand Suppl. 1986;548:65–78. [PubMed] [Google Scholar]
  28. Hearse D. J. Reperfusion of the ischemic myocardium. J Mol Cell Cardiol. 1977 Aug;9(8):605–616. doi: 10.1016/s0022-2828(77)80357-x. [DOI] [PubMed] [Google Scholar]
  29. Hess M. L., Okabe E., Ash P., Kontos H. A. Free radical mediation of the effects of acidosis on calcium transport by cardiac sarcoplasmic reticulum in whole heart homogenates. Cardiovasc Res. 1984 Mar;18(3):149–157. doi: 10.1093/cvr/18.3.149. [DOI] [PubMed] [Google Scholar]
  30. Jolly S. R., Kane W. J., Bailie M. B., Abrams G. D., Lucchesi B. R. Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res. 1984 Mar;54(3):277–285. doi: 10.1161/01.res.54.3.277. [DOI] [PubMed] [Google Scholar]
  31. KLINE I. K. Myocardial alterations associated with pheochromocytomas. Am J Pathol. 1961 May;38:539–551. [PMC free article] [PubMed] [Google Scholar]
  32. Kahn D. S., Rona G., Chappel C. I. Isoproterenol-induced cardiac necrosis. Ann N Y Acad Sci. 1969 Jan 31;156(1):285–293. doi: 10.1111/j.1749-6632.1969.tb16735.x. [DOI] [PubMed] [Google Scholar]
  33. Kammermeier H., Ober M. Essential contribution of thrombocytes to the occurrence of catecholamine-induced cardiac necroses. J Mol Cell Cardiol. 1985 Apr;17(4):371–376. doi: 10.1016/s0022-2828(85)80136-x. [DOI] [PubMed] [Google Scholar]
  34. Katz A. M., Freston J. W., Messineo F. C., Herbette L. G. Membrane damage and the pathogenesis of cardiomyopathies. J Mol Cell Cardiol. 1985 Jul;17 (Suppl 2):11–20. doi: 10.1016/0022-2828(85)90004-5. [DOI] [PubMed] [Google Scholar]
  35. Kurien V. A., Oliver M. F. Serum-free-fatty-acids after acute myocardial infarction and cerebral vascular occlusion. Lancet. 1966 Jul 16;2(7455):122–127. doi: 10.1016/s0140-6736(66)92420-2. [DOI] [PubMed] [Google Scholar]
  36. Lasley R. D., Ely S. W., Berne R. M., Mentzer R. M., Jr Allopurinol enhanced adenine nucleotide repletion after myocardial ischemia in the isolated rat heart. J Clin Invest. 1988 Jan;81(1):16–20. doi: 10.1172/JCI113288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lee J. C., Downing S. E. Effects of insulin on cardiac muscle contraction and responsiveness to norepinephrine. Am J Physiol. 1976 May;230(5):1360–1365. doi: 10.1152/ajplegacy.1976.230.5.1360. [DOI] [PubMed] [Google Scholar]
  38. Lee J. C., Sponenberg D. P. Role of alpha 1-adrenoceptors in norepinephrine-induced cardiomyopathy. Am J Pathol. 1985 Nov;121(2):316–321. [PMC free article] [PubMed] [Google Scholar]
  39. MALING H. M., HIGHMAN B. Exaggerated ventricular arrhythmias and myocardial fatty changes after large doses of norepinephrine and epinephrine in unanesthetized dogs. Am J Physiol. 1958 Sep;194(3):590–596. doi: 10.1152/ajplegacy.1958.194.3.590. [DOI] [PubMed] [Google Scholar]
  40. MITCHELL J. R., SHARP A. A. PLATELET CLUMPING IN VITRO. Br J Haematol. 1964 Jan;10:78–93. doi: 10.1111/j.1365-2141.1964.tb00681.x. [DOI] [PubMed] [Google Scholar]
  41. Manning A. S., Hearse D. J. Reperfusion-induced arrhythmias: mechanisms and prevention. J Mol Cell Cardiol. 1984 Jun;16(6):497–518. doi: 10.1016/s0022-2828(84)80638-0. [DOI] [PubMed] [Google Scholar]
  42. Martin A. M., Jr, Green W. B., Simmons R. L., Soloway H. B. Human myocardial zonal lesions. Arch Pathol. 1969 Mar;87(3):332–338. [PubMed] [Google Scholar]
  43. McCord J. M. Oxygen-derived radicals: a link between reperfusion injury and inflammation. Fed Proc. 1987 May 15;46(7):2402–2406. [PubMed] [Google Scholar]
  44. Moorhouse P. C., Grootveld M., Halliwell B., Quinlan J. G., Gutteridge J. M. Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS Lett. 1987 Mar 9;213(1):23–28. doi: 10.1016/0014-5793(87)81458-8. [DOI] [PubMed] [Google Scholar]
  45. Myers C. L., Weiss S. J., Kirsh M. M., Shlafer M. Involvement of hydrogen peroxide and hydroxyl radical in the 'oxygen paradox': reduction of creatine kinase release by catalase, allopurinol or deferoxamine, but not by superoxide dismutase. J Mol Cell Cardiol. 1985 Jul;17(7):675–684. doi: 10.1016/s0022-2828(85)80067-5. [DOI] [PubMed] [Google Scholar]
  46. Myers M. L., Bolli R., Lekich R. F., Hartley C. J., Roberts R. Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia. Circulation. 1985 Oct;72(4):915–921. doi: 10.1161/01.cir.72.4.915. [DOI] [PubMed] [Google Scholar]
  47. NAHAS G. G., BRUNSON J. G., KING W. M., CAVERT H. M. Functional and morphologic changes in heart lung preparations following administration of adrenal hormones. Am J Pathol. 1958 Jul-Aug;34(4):717–729. [PMC free article] [PubMed] [Google Scholar]
  48. NORKIN S. A., GRIFFITH E., DUBIN I. N., CZERNOBILSKY B. EFFECT OF ALBUMIN AND FATTY ACIDS ON CELLULAR GROWTH IN VITRO. Arch Pathol. 1965 Sep;80:273–277. [PubMed] [Google Scholar]
  49. Nudel D. B., Lee J. C., Downing S. E. Reciprocal inhibition of cardiac responses to norepinephrine and insulin. Am J Physiol. 1977 Dec;233(6):H665–H669. doi: 10.1152/ajpheart.1977.233.6.H665. [DOI] [PubMed] [Google Scholar]
  50. O'BRIEN J. R. SOME EFFECTS OF ADRENALINE AND ANTI-ADRENALINE COMPOUNDS ON PLATELETS IN VITRO AND IN VIVO. Nature. 1963 Nov 23;200:763–764. doi: 10.1038/200763a0. [DOI] [PubMed] [Google Scholar]
  51. O'BRIEN J. R. VARIABILITY IN THE AGGREGATION OF HUMAN PLATELETS OY ADRENALINE. Nature. 1964 Jun 20;202:1188–1190. doi: 10.1038/2021188a0. [DOI] [PubMed] [Google Scholar]
  52. Oliver M. F., Kurien V. A., Greenwood T. W. Relation between serum-free-fatty acids and arrhythmias and death after acute myocardial infarction. Lancet. 1968 Apr 6;1(7545):710–714. doi: 10.1016/s0140-6736(68)92163-6. [DOI] [PubMed] [Google Scholar]
  53. Opie L. H., Walpoth B., Barsacchi R. Calcium and catecholamines: relevance to cardiomyopathies and significance in therapeutic strategies. J Mol Cell Cardiol. 1985 Jul;17 (Suppl 2):21–34. doi: 10.1016/0022-2828(85)90005-7. [DOI] [PubMed] [Google Scholar]
  54. Otani H., Engelman R. M., Rousou J. A., Breyer R. H., Lemeshow S., Das D. K. Cardiac performance during reperfusion improved by pretreatment with oxygen free-radical scavengers. J Thorac Cardiovasc Surg. 1986 Feb;91(2):290–295. [PubMed] [Google Scholar]
  55. Otani H., Tanaka H., Inoue T., Umemoto M., Omoto K., Tanaka K., Sato T., Osako T., Masuda A., Nonoyama A. In vitro study on contribution of oxidative metabolism of isolated rabbit heart mitochondria to myocardial reperfusion injury. Circ Res. 1984 Aug;55(2):168–175. doi: 10.1161/01.res.55.2.168. [DOI] [PubMed] [Google Scholar]
  56. RONA G., CHAPPEL C. I., BALAZS T., GAUDRY R. An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. AMA Arch Pathol. 1959 Apr;67(4):443–455. [PubMed] [Google Scholar]
  57. RONA G., KAHN D. S., CHAPPEL C. I. STUDIES ON INFARCT-LIKE MYOCARDIAL NECROSIS PRODUCED BY ISOPROTERENOL: A REVIEW. Rev Can Biol. 1963 Jun;22:241–255. [PubMed] [Google Scholar]
  58. SZAKACS J. E., CANNON A. L-Norepinephrine myocarditis. Am J Clin Pathol. 1958 Nov;30(5):425–434. doi: 10.1093/ajcp/30.5.425. [DOI] [PubMed] [Google Scholar]
  59. SZAKACS J. E., MEHLMAN B. Pathologic changes induced by 1-norepineprine: quantitative aspects. Am J Cardiol. 1960 May;5:619–627. doi: 10.1016/0002-9149(60)90127-2. [DOI] [PubMed] [Google Scholar]
  60. Schenk E. A., Moss A. J. Cardiovascular effects of sustained norepinephrine infusions. II. Morphology. Circ Res. 1966 May;18(5):605–615. doi: 10.1161/01.res.18.5.605. [DOI] [PubMed] [Google Scholar]
  61. Shlafer M., Kane P. F., Wiggins V. Y., Kirsh M. M. Possible role for cytotoxic oxygen metabolites in the pathogenesis of cardiac ischemic injury. Circulation. 1982 Aug;66(2 Pt 2):I85–I92. [PubMed] [Google Scholar]
  62. Simons M., Downing S. E. Coronary vasoconstriction and catecholamine cardiomyopathy. Am Heart J. 1985 Feb;109(2):297–304. doi: 10.1016/0002-8703(85)90597-6. [DOI] [PubMed] [Google Scholar]
  63. Simpson P. J., Mickelson J. K., Lucchesi B. R. Free radical scavengers in myocardial ischemia. Fed Proc. 1987 May 15;46(7):2413–2421. [PubMed] [Google Scholar]
  64. Singal P. K., Dhillon K. S., Beamish R. E., Dhalla N. S. Protective effect of zinc against catecholamine-induced myocardial changes electrocardiographic and ultrastructural studies. Lab Invest. 1981 May;44(5):426–433. [PubMed] [Google Scholar]
  65. Singal P. K., Kapur N., Dhillon K. S., Beamish R. E., Dhalla N. S. Role of free radicals in catecholamine-induced cardiomyopathy. Can J Physiol Pharmacol. 1982 Nov;60(11):1390–1397. doi: 10.1139/y82-207. [DOI] [PubMed] [Google Scholar]
  66. Stewart J. R., Crute S. L., Loughlin V., Hess M. L., Greenfield L. J. Prevention of free radical-induced myocardial reperfusion injury with allopurinol. J Thorac Cardiovasc Surg. 1985 Jul;90(1):68–72. [PubMed] [Google Scholar]
  67. Todd G. L., Cullan G. E., Cullan G. M. Isoproterenol-induced myocardial necrosis and membrane permeability alterations in the isolated perfused rabbit heart. Exp Mol Pathol. 1980 Aug;33(1):43–54. doi: 10.1016/0014-4800(80)90006-4. [DOI] [PubMed] [Google Scholar]
  68. Van Vliet P. D., Burchell H. B., Titus J. L. Focal myocarditis associated with pheochromocytoma. N Engl J Med. 1966 May 19;274(20):1102–1108. doi: 10.1056/NEJM196605192742002. [DOI] [PubMed] [Google Scholar]
  69. Vatner S. F., Higgins C. B., Braunwald E. Effects of norepinephrine on coronary circulation and left ventricular dynamics in the conscious dog. Circ Res. 1974 Jun;34(6):812–823. doi: 10.1161/01.res.34.6.812. [DOI] [PubMed] [Google Scholar]
  70. WATKINS D. B. Pheochromocytoma: a review of the literature. J Chronic Dis. 1957 Nov;6(5):510–527. doi: 10.1016/0021-9681(57)90041-3. [DOI] [PubMed] [Google Scholar]
  71. Warltier D. C., Hardman H. F., Laddu A. R., Somani P., Gross G. J. Myocardial distribution of coronary blood flow in the isolated supported heart preparation. Cardiovasc Res. 1975 Sep;9(5):634–639. doi: 10.1093/cvr/9.5.634. [DOI] [PubMed] [Google Scholar]
  72. Warner T. J., Ross J. D. Phytochrome control of maize coleoptile section elongation: the role of cell wall extensibility. Plant Physiol. 1981 Nov;68(5):1024–1026. doi: 10.1104/pp.68.5.1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Werner J. C., Lee J. C., Downing S. E. Preservation of left ventricular function by insulin in experimental catecholamine cardiomyopathy. Am J Physiol. 1980 Feb;238(2):H257–H262. doi: 10.1152/ajpheart.1980.238.2.H257. [DOI] [PubMed] [Google Scholar]
  74. Werns S. W., Shea M. J., Driscoll E. M., Cohen C., Abrams G. D., Pitt B., Lucchesi B. R. The independent effects of oxygen radical scavengers on canine infarct size. Reduction by superoxide dismutase but not catalase. Circ Res. 1985 Jun;56(6):895–898. doi: 10.1161/01.res.56.6.895. [DOI] [PubMed] [Google Scholar]
  75. Werns S. W., Shea M. J., Lucchesi B. R. Free radicals and myocardial injury: pharmacologic implications. Circulation. 1986 Jul;74(1):1–5. doi: 10.1161/01.cir.74.1.1. [DOI] [PubMed] [Google Scholar]
  76. Werns S. W., Shea M. J., Mitsos S. E., Dysko R. C., Fantone J. C., Schork M. A., Abrams G. D., Pitt B., Lucchesi B. R. Reduction of the size of infarction by allopurinol in the ischemic-reperfused canine heart. Circulation. 1986 Mar;73(3):518–524. doi: 10.1161/01.cir.73.3.518. [DOI] [PubMed] [Google Scholar]
  77. Yates J. C., Beamish R. E., Dhalla N. S. Ventricular dysfunction and necrosis produced by adrenochrome metabolite of epinephrine: relation to pathogenesis of catecholamine cardiomyopathy. Am Heart J. 1981 Aug;102(2):210–221. doi: 10.1016/s0002-8703(81)80012-9. [DOI] [PubMed] [Google Scholar]
  78. Yates J. C., Dhalla N. S. Induction of necrosis and failure in the isolated perfused rat heart with oxidized isoproterenol. J Mol Cell Cardiol. 1975 Nov;7(11):807–816. doi: 10.1016/0022-2828(75)90132-7. [DOI] [PubMed] [Google Scholar]
  79. Yunge L., Bruneval P., Cokay M. S., Berry B., Peters H., Poulsen R., Hüttner I. Perturbation of the sarcolemmal membrane in isoproterenol-induced myocardial injury of the rat. Permeability and freeze-fracture studies in vivo and in vitro. Am J Pathol. 1989 Jan;134(1):171–185. [PMC free article] [PubMed] [Google Scholar]
  80. van der Vusse G. J., Roemen T. H., Prinzen F. W., Coumans W. A., Reneman R. S. Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res. 1982 Apr;50(4):538–546. doi: 10.1161/01.res.50.4.538. [DOI] [PubMed] [Google Scholar]

Articles from The Yale Journal of Biology and Medicine are provided here courtesy of Yale Journal of Biology and Medicine

RESOURCES