Skip to main content
The Yale Journal of Biology and Medicine logoLink to The Yale Journal of Biology and Medicine
. 1992 Nov-Dec;65(6):561–623.

Calcium signaling mechanisms in the gastric parietal cell.

C S Chew 1, K Nakamura 1, M Ljungström 1
PMCID: PMC2589772  PMID: 1341064

Abstract

Gastric hydrochloric acid (HCl) secretion is stimulated in vivo by histamine, acetylcholine, and gastrin. In vitro studies have shown that histamine acts mainly via a cAMP-dependent pathway, and acetylcholine acts via a calcium-dependent pathway. Histamine also elevates intracellular calcium ([Ca2+]i) in parietal cells. Both gastrin and acetylcholine release histamine from histamine-containing cells. In humans, rats, and rabbits, there is considerable controversy as to whether or not gastrin receptors are also present on the parietal cell. We utilized digitized video image analysis techniques in this study to demonstrate gastrin-induced changes in intracellular calcium in single parietal cells from rabbit in primary culture. Gastrin also stimulated a small increase in [14C]-aminopyrine (AP) accumulation, an index of acid secretory responsiveness in cultured parietal cells. In contrast to histamine and the cholinergic agonist, carbachol, stimulation of parietal cells with gastrin led to rapid loss of the calcium signaling response, an event that is presumed to be closely related to gastrin receptor activation. Moreover, different calcium signaling patterns were observed for histamine, carbachol, and gastrin, Previous observations coupled with present studies using manganese, caffeine, and ryanodine suggest that agonist-stimulated increases in calcium influx into parietal cells do not occur via voltage-sensitive calcium channels or nonspecific divalent cation channels. It also appears to be unlikely that release of intracellular calcium is mediated by a muscle or neuronal-type ryanodine receptor. We hypothesize that calcium influx may be mediated by either a calcium exchange mechanism or by an unidentified calcium channel subtype that possesses different molecular characteristics as compared to muscle, nerve, and certain secretory cell types such as, for example, the adrenal chromaffin cell. Release of intracellular calcium may be mediated via both InsP3-sensitive and -insensitive mechanisms. The InsP3-insensitive calcium pools, if present, do not appear, however, to possess ryanodine receptors capable of modulating calcium efflux from these storage sites.

Full text

PDF
561

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berglindh T., Helander H. F., Obrink K. J. Effects of secretagogues on oxygen consumption, aminopyrine accumulation and morphology in isolated gastric glands. Acta Physiol Scand. 1976 Aug;97(4):401–414. doi: 10.1111/j.1748-1716.1976.tb10281.x. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J., Galione A. Cytosolic calcium oscillators. FASEB J. 1988 Dec;2(15):3074–3082. doi: 10.1096/fasebj.2.15.2847949. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  4. Black E. W., Cornwell T. L., Lincoln T. M., Strada S. J., Thompson W. J. Fura 2 analysis of cytosolic calcium regulation in elutriated rat gastric parietal cells. J Cell Physiol. 1989 Jun;139(3):632–640. doi: 10.1002/jcp.1041390325. [DOI] [PubMed] [Google Scholar]
  5. Chew C. S., Brown M. R. Histamine increases phosphorylation of 27- and 40-kDa parietal cell proteins. Am J Physiol. 1987 Dec;253(6 Pt 1):G823–G829. doi: 10.1152/ajpgi.1987.253.6.G823. [DOI] [PubMed] [Google Scholar]
  6. Chew C. S., Brown M. R. Release of intracellular Ca2+ and elevation of inositol trisphosphate by secretagogues in parietal and chief cells isolated from rabbit gastric mucosa. Biochim Biophys Acta. 1986 Aug 29;888(1):116–125. doi: 10.1016/0167-4889(86)90077-7. [DOI] [PubMed] [Google Scholar]
  7. Chew C. S. Differential effects of extracellular calcium removal and nonspecific effects of Ca2+ antagonists on acid secretory activity in isolated gastric glands. Biochim Biophys Acta. 1985 Sep 30;846(3):370–378. doi: 10.1016/0167-4889(85)90008-4. [DOI] [PubMed] [Google Scholar]
  8. Chew C. S., Hersey S. J. Gastrin stimulation of isolated gastric glands. Am J Physiol. 1982 May;242(5):G504–G512. doi: 10.1152/ajpgi.1982.242.5.G504. [DOI] [PubMed] [Google Scholar]
  9. Chew C. S., Ljungström M., Smolka A., Brown M. R. Primary culture of secretagogue-responsive parietal cells from rabbit gastric mucosa. Am J Physiol. 1989 Jan;256(1 Pt 1):G254–G263. doi: 10.1152/ajpgi.1989.256.1.G254. [DOI] [PubMed] [Google Scholar]
  10. Chew C. S., Petropoulos A. C. Thapsigargin potentiates histamine-stimulated HCl secretion in gastric parietal cells but does not mimic cholinergic responses. Cell Regul. 1991 Jan;2(1):27–39. doi: 10.1091/mbc.2.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dehlinger-Kremer M., Zeuzem S., Schulz I. Interaction of caffeine-, IP3- and vanadate-sensitive Ca2+ pools in acinar cells of the exocrine pancreas. J Membr Biol. 1991 Jan;119(1):85–100. doi: 10.1007/BF01868543. [DOI] [PubMed] [Google Scholar]
  12. Delvalle J., Tsunoda Y., Williams J. A., Yamada T. Regulation of [Ca2+]i by secretagogue stimulation of canine gastric parietal cells. Am J Physiol. 1992 Mar;262(3 Pt 1):G420–G426. doi: 10.1152/ajpgi.1992.262.3.G420. [DOI] [PubMed] [Google Scholar]
  13. Foskett J. K., Wong D. Free cytoplasmic Ca2+ concentration oscillations in thapsigargin-treated parotid acinar cells are caffeine- and ryanodine-sensitive. J Biol Chem. 1991 Aug 5;266(22):14535–14538. [PubMed] [Google Scholar]
  14. Giannini G., Clementi E., Ceci R., Marziali G., Sorrentino V. Expression of a ryanodine receptor-Ca2+ channel that is regulated by TGF-beta. Science. 1992 Jul 3;257(5066):91–94. doi: 10.1126/science.1320290. [DOI] [PubMed] [Google Scholar]
  15. Glennon M. C., Bird G. S., Kwan C. Y., Putney J. W., Jr Actions of vasopressin and the Ca(2+)-ATPase inhibitor, thapsigargin, on Ca2+ signaling in hepatocytes. J Biol Chem. 1992 Apr 25;267(12):8230–8233. [PubMed] [Google Scholar]
  16. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  17. Hess P. Calcium channels in vertebrate cells. Annu Rev Neurosci. 1990;13:337–356. doi: 10.1146/annurev.ne.13.030190.002005. [DOI] [PubMed] [Google Scholar]
  18. Kopin A. S., Lee Y. M., McBride E. W., Miller L. J., Lu M., Lin H. Y., Kolakowski L. F., Jr, Beinborn M. Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3605–3609. doi: 10.1073/pnas.89.8.3605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ljungström M., Chew C. S. Calcium oscillations and morphological transformations in single cultured gastric parietal cells. Am J Physiol. 1991 Jan;260(1 Pt 1):C67–C78. doi: 10.1152/ajpcell.1991.260.1.C67. [DOI] [PubMed] [Google Scholar]
  20. Malgaroli A., Fesce R., Meldolesi J. Spontaneous [Ca2+]i fluctuations in rat chromaffin cells do not require inositol 1,4,5-trisphosphate elevations but are generated by a caffeine- and ryanodine-sensitive intracellular Ca2+ store. J Biol Chem. 1990 Feb 25;265(6):3005–3008. [PubMed] [Google Scholar]
  21. Merritt J. E., Hallam T. J. Platelets and parotid acinar cells have different mechanisms for agonist-stimulated divalent cation entry. J Biol Chem. 1988 May 5;263(13):6161–6164. [PubMed] [Google Scholar]
  22. Muallem S., Khademazad M., Sachs G. The route of Ca2+ entry during reloading of the intracellular Ca2+ pool in pancreatic acini. J Biol Chem. 1990 Feb 5;265(4):2011–2016. [PubMed] [Google Scholar]
  23. Mulvihill S. J., Pappas T. N., Debas H. T. Characterization of in vivo acid secretory responses of rabbit with comparison to dog and rat. Dig Dis Sci. 1989 Jun;34(6):895–904. doi: 10.1007/BF01540276. [DOI] [PubMed] [Google Scholar]
  24. Mårdh S., Song Y. H., Carlsson C., Björkman T. Mechanisms of stimulation of acid production in parietal cells isolated from the pig gastric mucosa. Acta Physiol Scand. 1987 Dec;131(4):589–598. doi: 10.1111/j.1748-1716.1987.tb08280.x. [DOI] [PubMed] [Google Scholar]
  25. Mészáros L. G., Volpe P. Caffeine- and ryanodine-sensitive Ca2+ stores of canine cerebrum and cerebellum neurons. Am J Physiol. 1991 Dec;261(6 Pt 1):C1048–C1054. doi: 10.1152/ajpcell.1991.261.6.C1048. [DOI] [PubMed] [Google Scholar]
  26. Negulescu P. A., Machen T. E. Intracellular Ca regulation during secretagogue stimulation of the parietal cell. Am J Physiol. 1988 Jan;254(1 Pt 1):C130–C140. doi: 10.1152/ajpcell.1988.254.1.C130. [DOI] [PubMed] [Google Scholar]
  27. Oddsdottir M., Goldenring J. R., Adrian T. E., Zdon M. J., Zucker K. A., Modlin I. M. Identification and characterization of a cytosolic 30 kDa histamine stimulated phosphoprotein in parietal cell cytosol. Biochem Biophys Res Commun. 1988 Jul 29;154(2):489–496. doi: 10.1016/0006-291x(88)90166-0. [DOI] [PubMed] [Google Scholar]
  28. Osipchuk Y. V., Wakui M., Yule D. I., Gallacher D. V., Petersen O. H. Cytoplasmic Ca2+ oscillations evoked by receptor stimulation, G-protein activation, internal application of inositol trisphosphate or Ca2+: simultaneous microfluorimetry and Ca2+ dependent Cl- current recording in single pancreatic acinar cells. EMBO J. 1990 Mar;9(3):697–704. doi: 10.1002/j.1460-2075.1990.tb08162.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  30. Roche S., Magous R. Gastrin and CCK-8 induce inositol 1,4,5-trisphosphate formation in rabbit gastric parietal cells. Biochim Biophys Acta. 1989 Dec 14;1014(3):313–318. doi: 10.1016/0167-4889(89)90228-0. [DOI] [PubMed] [Google Scholar]
  31. Rossier M. F., Bird G. S., Putney J. W., Jr Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in rat liver. Possible linkage to the plasma membrane through the actin microfilaments. Biochem J. 1991 Mar 15;274(Pt 3):643–650. doi: 10.1042/bj2740643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rousseau E., Meissner G. Single cardiac sarcoplasmic reticulum Ca2+-release channel: activation by caffeine. Am J Physiol. 1989 Feb;256(2 Pt 2):H328–H333. doi: 10.1152/ajpheart.1989.256.2.H328. [DOI] [PubMed] [Google Scholar]
  33. Ryberg B., Tielemans Y., Axelson J., Carlsson E., Håkanson R., Mattson H., Sundler F., Willems G. Gastrin stimulates the self-replication rate of enterochromaffinlike cells in the rat stomach. Effects of omeprazole, ranitidine, and gastrin-17 in intact and antrectomized rats. Gastroenterology. 1990 Oct;99(4):935–942. doi: 10.1016/0016-5085(90)90610-d. [DOI] [PubMed] [Google Scholar]
  34. Saluja A. K., Dawra R. K., Lerch M. M., Steer M. L. CCK-JMV-180, an analog of cholecystokinin, releases intracellular calcium from an inositol trisphosphate-independent pool in rat pancreatic acini. J Biol Chem. 1992 Jun 5;267(16):11202–11207. [PubMed] [Google Scholar]
  35. Stauderman K. A., Murawsky M. M. The inositol 1,4,5-trisphosphate-forming agonist histamine activates a ryanodine-sensitive Ca2+ release mechanism in bovine adrenal chromaffin cells. J Biol Chem. 1991 Oct 15;266(29):19150–19153. [PubMed] [Google Scholar]
  36. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tsien R. Y., Rink T. J., Poenie M. Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. Cell Calcium. 1985 Apr;6(1-2):145–157. doi: 10.1016/0143-4160(85)90041-7. [DOI] [PubMed] [Google Scholar]
  38. Urushidani T., Hanzel D. K., Forte J. G. Protein phosphorylation associated with stimulation of rabbit gastric glands. Biochim Biophys Acta. 1987 Sep 14;930(2):209–219. doi: 10.1016/0167-4889(87)90033-4. [DOI] [PubMed] [Google Scholar]

Articles from The Yale Journal of Biology and Medicine are provided here courtesy of Yale Journal of Biology and Medicine

RESOURCES