Skip to main content
The Yale Journal of Biology and Medicine logoLink to The Yale Journal of Biology and Medicine
. 1984 May-Jun;57(3):301–316.

The GABA hypothesis of the pathogenesis of hepatic encephalopathy: current status.

E A Jones, D F Schafer, P Ferenci, S C Pappas
PMCID: PMC2589853  PMID: 6093394

Abstract

Gamma-aminobutyric acid (GABA), the principal inhibitory neurotransmitter of the mammalian brain, can induce coma. Outside the central nervous system it is synthesized by gut bacteria and catabolized largely in the liver. GABA and its agonists, as well as benzodiazepines and barbiturates, induce neural inhibition as a consequence of their interaction with specific binding sites for each of these classes of neuroactive substances on the GABA receptor complex of postsynaptic neurons. In a rabbit model of acute liver failure: (i) the pattern of postsynaptic neuronal activity in hepatic coma, as assessed by visual evoked potentials, is identical to that associated with coma induced by drugs which activate the GABA neurotransmitter system (benzodiazepines, barbiturates, and GABA agonists); (ii) the levels of GABA-like activity in peripheral blood plasma increase appreciably before the onset of hepatic encephalopathy, due at least in part to impaired hepatic extraction of gut-derived GABA from portal venous blood; (iii) the blood-brain barrier becomes abnormally permeable to an isomer of GABA, alpha-amino-isobutyric acid, before the onset of hepatic encephalopathy; and (iv) hepatic coma is associated with an increase in the density of receptors for GABA and benzodiazepines in the brain. These findings are the bases of the following hypotheses: (i) when the liver fails, gut-derived GABA in plasma crosses an abnormally permeable blood-brain barrier and by mediating neural inhibition contributes to hepatic encephalopathy; (ii) an increased number of GABA receptors in the brain found in liver failure increases the sensitivity of the brain to GABA-ergic neural inhibition; and (iii) an increased number of drug binding sites mediates the increased sensitivity to benzodiazepines and barbiturates observed in liver failure by permitting increased drug effect.

Full text

PDF
301

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baraldi M., Zeneroli Z. L. Experimental hepatic encephalopathy: changes in the binding of gamma-aminobutyric acid. Science. 1982 Apr 23;216(4544):427–429. doi: 10.1126/science.6280279. [DOI] [PubMed] [Google Scholar]
  2. Blitzer B. L., Waggoner J. G., Jones E. A., Gralnick H. R., Towne D., Butler J., Weise V., Kopin I. J., Walters I., Teychenne P. F. A model of fulminant hepatic failure in the rabbit. Gastroenterology. 1978 Apr;74(4):664–671. [PubMed] [Google Scholar]
  3. Bowdler J. M., Green A. R. Regional rat brain benzodiazepine receptor number and gamma-aminobutyric acid concentration following a convulsion. Br J Pharmacol. 1982 Jun;76(2):291–298. doi: 10.1111/j.1476-5381.1982.tb09219.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COBB W. A., DAWSON G. D. The latency and form in man of the occipital potentials evoked by bright flashes. J Physiol. 1960 Jun;152:108–121. doi: 10.1113/jphysiol.1960.sp006474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiappa K. H., Ropper A. H. Evoked potentials in clinical medicine (first of two parts). N Engl J Med. 1982 May 13;306(19):1140–1150. doi: 10.1056/NEJM198205133061904. [DOI] [PubMed] [Google Scholar]
  6. Enna S. J., Snyder S. H. A simple, sensitive and specific radioreceptor assay for endogenous GABA in brain tissue. J Neurochem. 1976 Jan;26(1):221–224. doi: 10.1111/j.1471-4159.1976.tb04465.x. [DOI] [PubMed] [Google Scholar]
  7. Ferenci P., Covell D., Schafer D. F., Waggoner J. G., Shrager R., Jones E. A. Metabolism of the inhibitory neurotransmitter gamma-aminobutyric acid in a rabbit model of fulminant hepatic failure. Hepatology. 1983 Jul-Aug;3(4):507–512. doi: 10.1002/hep.1840030406. [DOI] [PubMed] [Google Scholar]
  8. Ferenci P., Jacobs R., Pappas S. C., Schafer D. F., Jones E. A. Enzymes of cerebral GABA metabolism and synaptosomal GABA uptake in acute liver failure in the rabbit: evidence for decreased cerebral GABA-transaminase activity. J Neurochem. 1984 May;42(5):1487–1490. doi: 10.1111/j.1471-4159.1984.tb02816.x. [DOI] [PubMed] [Google Scholar]
  9. Ferenci P., Pappas S. C., Munson P. J., Henson K., Jones E. A. Changes in the status of neurotransmitter receptors in a rabbit model of hepatic encephalopathy. Hepatology. 1984 Mar-Apr;4(2):186–191. doi: 10.1002/hep.1840040204. [DOI] [PubMed] [Google Scholar]
  10. Ferenci P., Pappas S. C., Munson P. J., Jones E. A. Changes in glutamate receptors on synaptic membranes associated with hepatic encephalopathy or hyperammonemia in the rabbit. Hepatology. 1984 Jan-Feb;4(1):25–29. doi: 10.1002/hep.1840040105. [DOI] [PubMed] [Google Scholar]
  11. Ferenci P., Schafer D. F., Kleinberger G., Hoofnagle J. H., Jones E. A. Serum levels of gamma-aminobutyric-acid-like activity in acute and chronic hepatocellular disease. Lancet. 1983 Oct 8;2(8354):811–814. doi: 10.1016/s0140-6736(83)90735-3. [DOI] [PubMed] [Google Scholar]
  12. Fischer J. E., Baldessarini R. J. False neurotransmitters and hepatic failure. Lancet. 1971 Jul 10;2(7715):75–80. doi: 10.1016/s0140-6736(71)92048-4. [DOI] [PubMed] [Google Scholar]
  13. Horowitz M. E., Schafer D. F., Molnar P., Jones E. A., Blasberg R. G., Patlak C. S., Waggoner J., Fenstermacher J. D. Increased blood-brain transfer in a rabbit model of acute liver failure. Gastroenterology. 1983 May;84(5 Pt 1):1003–1011. [PubMed] [Google Scholar]
  14. Hoyumpa A. M., Jr, Schenker S. Perspectives in hepatic encephalopathy. J Lab Clin Med. 1982 Oct;100(4):477–487. [PubMed] [Google Scholar]
  15. James J. H., Ziparo V., Jeppsson B., Fischer J. E. Hyperammonaemia, plasma aminoacid imbalance, and blood-brain aminoacid transport: a unified theory of portal-systemic encephalopathy. Lancet. 1979 Oct 13;2(8146):772–775. doi: 10.1016/s0140-6736(79)92119-6. [DOI] [PubMed] [Google Scholar]
  16. Jones E. A. The enigma of hepatic encephalopathy. Postgrad Med J. 1983;59 (Suppl 4):42–54. [PubMed] [Google Scholar]
  17. KRNJEVIC K., PHILLIS J. W. Iontophoretic studies of neurones in the mammalian cerebral cortex. J Physiol. 1963 Feb;165:274–304. doi: 10.1113/jphysiol.1963.sp007057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kahn C. R. Membrane receptors for hormones and neurotransmitters. J Cell Biol. 1976 Aug;70(2 Pt 1):261–286. doi: 10.1083/jcb.70.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Livingstone A. S., Potvin M., Goresky C. A., Finlayson M. H., Hinchey E. J. Changes in the blood-brain barrier in hepatic coma after hepatectomy in the rat. Gastroenterology. 1977 Oct;73(4 Pt 1):697–704. [PubMed] [Google Scholar]
  20. Nakayama K. The relationship of visual evoked potentials to cortical physiology. Ann N Y Acad Sci. 1982;388:21–36. doi: 10.1111/j.1749-6632.1982.tb50782.x. [DOI] [PubMed] [Google Scholar]
  21. Oldendorf W. H. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol. 1971 Dec;221(6):1629–1639. doi: 10.1152/ajplegacy.1971.221.6.1629. [DOI] [PubMed] [Google Scholar]
  22. Pappas S. C., Ferenci P., Schafer D. F., Jones E. A. Visual evoked potentials in a rabbit model of hepatic encephalopathy. II. Comparison of hyperammonemic encephalopathy, postictal coma, and coma induced by synergistic neurotoxins. Gastroenterology. 1984 Mar;86(3):546–551. [PubMed] [Google Scholar]
  23. Paul S. M., Marangos P. J., Skolnick P. The benzodiazepine--GABA--chloride ionophore receptor complex: common site of minor tranquilizer action. Biol Psychiatry. 1981 Mar;16(3):213–229. [PubMed] [Google Scholar]
  24. Roche-Sicot J., Sicot C., Peignoux M., Bourdiau D., Degos F., Degos J. D., Prandi D., Rueff B., Benhamou J. P. Acute hepatic encephalopathy in the rat: the effect of cross-circulation. Clin Sci Mol Med. 1974 Dec;47(6):609–615. doi: 10.1042/cs0470609. [DOI] [PubMed] [Google Scholar]
  25. SHERLOCK S., SUMMERSKILL W. H., WHITE L. P., PHEAR E. A. Portal-systemic encephalopathy; neurological complications of liver disease. Lancet. 1954 Sep 4;267(6836):454–457. [PubMed] [Google Scholar]
  26. Schafer D. F., Fowler J. M., Jones E. A. Colonic bacteria: a source of gamma-aminobutyric acid in blood. Proc Soc Exp Biol Med. 1981 Jul;167(3):301–303. doi: 10.3181/00379727-167-41169. [DOI] [PubMed] [Google Scholar]
  27. Schafer D. F., Fowler J. M., Munson P. J., Thakur A. K., Waggoner J. G., Jones E. A. Gamma-aminobutyric acid and benzodiazepine receptors in an animal model of fulminant hepatic failure. J Lab Clin Med. 1983 Dec;102(6):870–880. [PubMed] [Google Scholar]
  28. Schafer D. F., Jones E. A. Hepatic encephalopathy and the gamma-aminobutyric-acid neurotransmitter system. Lancet. 1982 Jan 2;1(8262):18–20. doi: 10.1016/s0140-6736(82)92559-4. [DOI] [PubMed] [Google Scholar]
  29. Schafer D. F., Pappas S. C., Brody L. E., Jacobs R., Jones E. A. Visual evoked potentials in a rabbit model of hepatic encephalopathy. I. Sequential changes and comparisons with drug-induced comas. Gastroenterology. 1984 Mar;86(3):540–545. [PubMed] [Google Scholar]
  30. Skolnick P., Moncada V., Barker J. L., Paul S. M. Pentobarbital: dual actions to increase brain benzodiazepine receptor affinity. Science. 1981 Mar 27;211(4489):1448–1450. doi: 10.1126/science.6258230. [DOI] [PubMed] [Google Scholar]
  31. Study R. E., Barker J. L. Diazepam and (--)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurons. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7180–7184. doi: 10.1073/pnas.78.11.7180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tallman J. F., Paul S. M., Skolnick P., Gallager D. W. Receptors for the age of anxiety: pharmacology of the benzodiazepines. Science. 1980 Jan 18;207(4428):274–281. doi: 10.1126/science.6101294. [DOI] [PubMed] [Google Scholar]
  33. Trewby P. N., Casemore C., Williams R. Continuous bipolar recording of the EEG in patients with fulminant hepatic failure. Electroencephalogr Clin Neurophysiol. 1978 Jul;45(1):107–110. doi: 10.1016/0013-4694(78)90347-4. [DOI] [PubMed] [Google Scholar]
  34. Zeneroli M. L., Penne A., Parrinello G., Cremonini C., Ventura E. Comparative evaluation of visual evoked potentials in experimental hepatic encephalopathy and in pharmacologically induced coma-like states in rat. Life Sci. 1981 Mar 30;28(13):1507–1515. doi: 10.1016/0024-3205(81)90383-0. [DOI] [PubMed] [Google Scholar]
  35. Zeneroli M. L., Ventura E., Baraldi M., Penne A., Messori E., Zieve L. Visual evoked potentials in encephalopathy induced by galactosamine, ammonia, dimethyldisulfide, and octanoic acid. Hepatology. 1982 Sep-Oct;2(5):532–538. doi: 10.1002/hep.1840020504. [DOI] [PubMed] [Google Scholar]
  36. Zieve L. Hepatic encephalopathy: summary of present knowledge with an elaboration on recent developments. Prog Liver Dis. 1979;6:327–341. [PubMed] [Google Scholar]
  37. Zieve L., Nicoloff D. M. Pathogenesis of hepatic coma. Annu Rev Med. 1975;26:143–157. doi: 10.1146/annurev.me.26.020175.001043. [DOI] [PubMed] [Google Scholar]
  38. Zieve L. The mechanism of hepatic coma. Hepatology. 1981 Jul-Aug;1(4):360–365. doi: 10.1002/hep.1840010414. [DOI] [PubMed] [Google Scholar]

Articles from The Yale Journal of Biology and Medicine are provided here courtesy of Yale Journal of Biology and Medicine

RESOURCES