Abstract
Lasers could come to occupy a highly important position in the armament of medicine. They are the brightest known sources of light, man-made or natural, and emit light having such properties as coherence and monochromaticity. Furthermore, lasers have the ability to deliver very brief pulses of light which can cause unique alterations in biological materials. The major obstacle to the increased use of lasers in medicine and surgery is not the availability of laser devices, but the dearth of basic information about laser-tissue interactions. We have recently demonstrated that, even in turbid tissue such as the dermis, it is possible simultaneously to induce microscopically selective thermal damage, localized to millions of selectively absorbing targets, while sparing surrounding tissues. These "targets" may be as small as organelles or as large as blood vessels. Such localized thermal damage is truly unique to pulsed laser exposures. The scope and medical utility of these lesions has yet to be fully understood. Thus, there is much research to be done in describing and characterizing laser-induced injury. There is, however, ample evidence that several laser therapies could be improved by using selectively absorbed, short pulses that lead to the spatial confinement of thermal injury. Treatment of port wine stains, pigmented lesions, atheromatous arterial plaques, and the fragmentation of kidney and gall stones are examples. It should also be possible to use a variety of systems to deliver exogenous laser targets on or within individual types of cells or organelles. Such chromophores may lead to new forms of cancer therapy, for example.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. R., Parrish J. A. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med. 1981;1(3):263–276. doi: 10.1002/lsm.1900010310. [DOI] [PubMed] [Google Scholar]
- Anderson R. R., Parrish J. A. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983 Apr 29;220(4596):524–527. doi: 10.1126/science.6836297. [DOI] [PubMed] [Google Scholar]
- Anderson R. R., Parrish J. A. The optics of human skin. J Invest Dermatol. 1981 Jul;77(1):13–19. doi: 10.1111/1523-1747.ep12479191. [DOI] [PubMed] [Google Scholar]
- Arrowsmith P. N., Marks R. G. Visual, refractive, and keratometric results of radial keratotomy. One-year follow-up. Arch Ophthalmol. 1984 Nov;102(11):1612–1617. doi: 10.1001/archopht.1984.01040031302012. [DOI] [PubMed] [Google Scholar]
- Barsky S. H., Rosen S., Geer D. E., Noe J. M. The nature and evolution of port wine stains: a computer-assisted study. J Invest Dermatol. 1980 Mar;74(3):154–157. doi: 10.1111/1523-1747.ep12535052. [DOI] [PubMed] [Google Scholar]
- Binder P. S. The status of radial keratotomy in 1984. Arch Ophthalmol. 1984 Nov;102(11):1601–1603. doi: 10.1001/archopht.1984.01040031291009. [DOI] [PubMed] [Google Scholar]
- Coscas G., Soubrane G. The effects of red krypton and green argon laser on the foveal region. A clinical and experimental study. Ophthalmology. 1983 Aug;90(8):1013–1022. doi: 10.1016/s0161-6420(83)80029-3. [DOI] [PubMed] [Google Scholar]
- Fidler J. P., Law E., MacMillan B. G., Fox S. H., Rockwell R. J., Jr Comparison of carbon dioxide laser excision of burns with other thermal knives. Ann N Y Acad Sci. 1976 Jan 30;267:254–262. doi: 10.1111/j.1749-6632.1976.tb41613.x. [DOI] [PubMed] [Google Scholar]
- Fox J. L. The use of laser radiation as a surgical "light knife". J Surg Res. 1969 Apr;9(4):199–205. doi: 10.1016/0022-4804(69)90053-5. [DOI] [PubMed] [Google Scholar]
- Fujita H., Matsuo I. An in vitro test for photoinduced toxicity of benzothiadiazine diuretics using bacteriophage lambda. Photochem Photobiol. 1985 Mar;41(3):355–359. doi: 10.1111/j.1751-1097.1985.tb03497.x. [DOI] [PubMed] [Google Scholar]
- Gange R. W., Jaenicke K. F., Anderson R. R., Parrish J. A. Effect of preirradiation tissue target temperature upon selective vascular damage induced by 577-nm tunable dye laser pulses. Microvasc Res. 1984 Jul;28(1):125–130. doi: 10.1016/0026-2862(84)90034-7. [DOI] [PubMed] [Google Scholar]
- Greenwald J., Rosen S., Anderson R. R., Harrist T., MacFarland F., Noe J., Parrish J. A. Comparative histological studies of the tunable dye (at 577 nm) laser and argon laser: the specific vascular effects of the dye laser. J Invest Dermatol. 1981 Sep;77(3):305–310. doi: 10.1111/1523-1747.ep12482476. [DOI] [PubMed] [Google Scholar]
- Holloway G. A., Jr, Watkins D. W. Laser Doppler measurement of cutaneous blood flow. J Invest Dermatol. 1977 Sep;69(3):306–309. doi: 10.1111/1523-1747.ep12507665. [DOI] [PubMed] [Google Scholar]
- Hulsbergen Henning J. P., van Gemert M. J., Lahaye C. T. Clinical and histological evaluation of portwine stain treatment with a microsecond-pulsed dye-laser at 577 NM. Lasers Surg Med. 1984;4(4):375–380. doi: 10.1002/lsm.1900040410. [DOI] [PubMed] [Google Scholar]
- L'Esperance F. A., Jr Clinical photocoagulation with the krypton laser. Arch Ophthalmol. 1972 Jun;87(6):693–700. doi: 10.1001/archopht.1972.01000020695016. [DOI] [PubMed] [Google Scholar]
- Lane R. J., Linsker R., Wynne J. J., Torres A., Geronemus R. G. Ultraviolet-laser ablation of skin. Arch Dermatol. 1985 May;121(5):609–617. [PubMed] [Google Scholar]
- Mihashi S., Jako G. J., Incze J., Strong M. S., Vaughan C. W. Laser surgery in otolaryngology: interaction of CO2 laser and soft tissue. Ann N Y Acad Sci. 1976 Jan 30;267:263–294. doi: 10.1111/j.1749-6632.1976.tb41614.x. [DOI] [PubMed] [Google Scholar]
- Murphy G. F., Shepard R. S., Paul B. S., Menkes A., Anderson R. R., Parrish J. A. Organelle-specific injury to melanin-containing cells in human skin by pulsed laser irradiation. Lab Invest. 1983 Dec;49(6):680–685. [PubMed] [Google Scholar]
- Paul B. S., Anderson R. R., Jarve J., Parrish J. A. The effect of temperature and other factors on selective microvascular damage caused by pulsed dye laser. J Invest Dermatol. 1983 Oct;81(4):333–336. doi: 10.1111/1523-1747.ep12519832. [DOI] [PubMed] [Google Scholar]
- Solomon H., Goldman L., Henderson B., Richfield D., Franzen M. Histopathology of the laser treatment of port-wine lesions. Biopsy studies of treated areas observed up to three years after laser impacts. J Invest Dermatol. 1968 Feb;50(2):141–146. doi: 10.1038/jid.1968.17. [DOI] [PubMed] [Google Scholar]
- Stellar S., Levine N., Ger R., Levenson S. M. Carbon-dioxide laser for excision of burn eschars. Lancet. 1971 May 8;1(7706):945–945. doi: 10.1016/s0140-6736(71)91446-2. [DOI] [PubMed] [Google Scholar]
- Tan O. T., Kerschmann R., Parrish J. A. The effect of epidermal pigmentation on selective vascular effects of pulsed laser. Lasers Surg Med. 1984;4(4):365–374. doi: 10.1002/lsm.1900040409. [DOI] [PubMed] [Google Scholar]
- Trokel S. L., Srinivasan R., Braren B. Excimer laser surgery of the cornea. Am J Ophthalmol. 1983 Dec;96(6):710–715. doi: 10.1016/s0002-9394(14)71911-7. [DOI] [PubMed] [Google Scholar]
- Wan S., Anderson R. R., Parrish J. A. Analytical modeling for the optical properties of the skin with in vitro and in vivo applications. Photochem Photobiol. 1981 Oct;34(4):493–499. doi: 10.1111/j.1751-1097.1981.tb09391.x. [DOI] [PubMed] [Google Scholar]
