Abstract
Studies of the stretch reflex in decerebrate cats indicate a phase advance of peak sinusoidal tension in steady-state cycles between 0.1 and 10 Hz. This phase advance is reduced in acute and chronic cerebellectomy, as shown in previous investigations. Also, the augmentation of muscle peak tension in initial sinusoidal stretch cycles at 0.5-5 Hz has been found to be reduced during the time of reflex and motor instability in the several months following cerebellar ablation. This report shows the increased amplitude and phase lead of integrated electromyographic activity in initiating sinusoidal stretch cycles in the decerebrate cat. These reflex aspects are demonstrated in relation to the discharge of neurons in the dorsal spinocerebellar tract and of cerebellar cortical Purkinje cells in initial sinusoidal cycles. The intensity and phase advance of the discharge in dorsal spinocerebellar tract neurons is altered little, but these features are usually increased in Purkinje cells during initial stretches compared to continuous cycling. In terms of overall motor control, these findings are compatible with concepts of movement control, modulated by the cerebellum, in which the discharge of antagonist motor neurons is regulated in concert with that of agonist muscles upon initiation and termination of movement.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arshavsky Y. I., Berkinblit M. B., Fukson O. I., Gelfand I. M., Orlovsky G. N. Recordings of neurones of the dorsal spinocerebellar tract during evoked locomotion. Brain Res. 1972 Aug 11;43(1):272–275. doi: 10.1016/0006-8993(72)90295-8. [DOI] [PubMed] [Google Scholar]
- Burton J. E., Onoda N. Dependence of the activity of interpositus and red nucleus neurons on sensory input data generated by movement. Brain Res. 1978 Aug 18;152(1):41–63. doi: 10.1016/0006-8993(78)90133-6. [DOI] [PubMed] [Google Scholar]
- GRANIT R., HOLMGREN B., MERTON P. A. The two routes for excitation of muscle and their subservience to the cerebellum. J Physiol. 1955 Oct 28;130(1):213–224. doi: 10.1113/jphysiol.1955.sp005404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert P. F., Thach W. T. Purkinje cell activity during motor learning. Brain Res. 1977 Jun 10;128(2):309–328. doi: 10.1016/0006-8993(77)90997-0. [DOI] [PubMed] [Google Scholar]
- Gilman S., Ebel H. C. Fusimotor neuron responses to natural stimuli as a function of prestimulus fusimotor activity in decerebellate cats. Brain Res. 1970 Jul 29;21(3):367–384. doi: 10.1016/0006-8993(70)90417-8. [DOI] [PubMed] [Google Scholar]
- HIGGINS D. C., GLASER G. H. STRETCH RESPONSES DURING CHRONIC CEREBELLAR ABLATION. A STUDY OF REFLEX INSTABILITY. J Neurophysiol. 1964 Jan;27:49–62. doi: 10.1152/jn.1964.27.1.49. [DOI] [PubMed] [Google Scholar]
- HIGGINS D. C., PARTRIDGE L. D., GLASER G. H. A transient cerebellar influence on stretch responses. J Neurophysiol. 1962 Sep;25:684–692. doi: 10.1152/jn.1962.25.5.684. [DOI] [PubMed] [Google Scholar]
- Hallett M., Shahani B. T., Young R. R. EMG analysis of patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1975 Dec;38(12):1163–1169. doi: 10.1136/jnnp.38.12.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins D. C. Behavior of dorsal spinocerebellar neurons during sinusoidal muscle stretch. Am J Physiol. 1971 Jun;220(6):2032–2046. doi: 10.1152/ajplegacy.1971.220.6.2032. [DOI] [PubMed] [Google Scholar]
- MacKay W. A., Murphy J. T. Cerebellar modulation of reflex gain. Prog Neurobiol. 1979;13(4):361–417. doi: 10.1016/0301-0082(79)90004-2. [DOI] [PubMed] [Google Scholar]
- Marsden C. D., Merton P. A., Morton H. B. Human postural responses. Brain. 1981 Sep;104(3):513–534. doi: 10.1093/brain/104.3.513. [DOI] [PubMed] [Google Scholar]
- Murphy P. R., Stein R. B., Taylor J. Phasic and tonic modulation of impulse rates in gamma-motoneurons during locomotion in premammillary cats. J Neurophysiol. 1984 Aug;52(2):228–243. doi: 10.1152/jn.1984.52.2.228. [DOI] [PubMed] [Google Scholar]
- Orlovsky G. N. Activity of rubrospinal neurons during locomotion. Brain Res. 1972 Nov 13;46:99–112. doi: 10.1016/0006-8993(72)90008-x. [DOI] [PubMed] [Google Scholar]
- Orlovsky G. N. Activity of vestibulospinal neurons during locomotion. Brain Res. 1972 Nov 13;46:85–98. doi: 10.1016/0006-8993(72)90007-8. [DOI] [PubMed] [Google Scholar]
- Rubia F. J., Kolb F. P. Responses of cerebellar units to a passive movement in the decerebrate cat. Exp Brain Res. 1978 Mar 15;31(3):387–401. doi: 10.1007/BF00237297. [DOI] [PubMed] [Google Scholar]
- Schieber M. H., Thach W. T., Jr Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons. J Neurophysiol. 1985 Nov;54(5):1228–1270. doi: 10.1152/jn.1985.54.5.1228. [DOI] [PubMed] [Google Scholar]
- Thach W. T. Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum. J Neurophysiol. 1978 May;41(3):654–676. doi: 10.1152/jn.1978.41.3.654. [DOI] [PubMed] [Google Scholar]
- Tsukahara N., Kiyoara T., Ijichi Y. The mode of cerebellar control of pupillary light reflex. Brain Res. 1973 Sep 28;60(1):244–248. doi: 10.1016/0006-8993(73)90864-0. [DOI] [PubMed] [Google Scholar]
- Udo M., Matsukawa K., Kamei H., Oda Y. Cerebellar control of locomotion: effects of cooling cerebellar intermediate cortex in high decerebrate and awake walking cats. J Neurophysiol. 1980 Jul;44(1):119–134. doi: 10.1152/jn.1980.44.1.119. [DOI] [PubMed] [Google Scholar]
- Yu J., Eidelberg E. Recovery of locomotor function in cats after localized cerebellar lesions. Brain Res. 1983 Aug 22;273(1):121–131. doi: 10.1016/0006-8993(83)91100-9. [DOI] [PubMed] [Google Scholar]
