Skip to main content
The Yale Journal of Biology and Medicine logoLink to The Yale Journal of Biology and Medicine
. 1987 Sep-Oct;60(5):421–435.

Fractals in physiology and medicine.

A L Goldberger 1, B J West 1
PMCID: PMC2590346  PMID: 3424875

Abstract

Nonlinear dynamics, a branch of the basic sciences that studies complex physical systems, offers novel approaches to long-standing problems of physiological form and function. The nonlinear concept of fractals, introduced and developed over the last decade, provides insights into the organization of complex structures such as the tracheobronchial tree and heart, as well as into the dynamics of healthy physiological variability. Alterations in fractal scaling may underlie a number of pathophysiological disturbances, including sudden cardiac death syndromes.

Full text

PDF
421

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhargava V., Goldberger A. L., Ward D., Ahnve S. Torsades de pointes: a characteristic spectral pattern in sudden cardiac death. IEEE Trans Biomed Eng. 1986 Sep;33(9):894–896. doi: 10.1109/TBME.1986.325786. [DOI] [PubMed] [Google Scholar]
  2. Goldberger A. L., Bhargava V., Froelicher V., Covell J. Effect of myocardial infarction on high-frequency QRS potentials. Circulation. 1981 Jul;64(1):34–42. doi: 10.1161/01.cir.64.1.34. [DOI] [PubMed] [Google Scholar]
  3. Goldberger A. L., Bhargava V., West B. J., Mandell A. J. On a mechanism of cardiac electrical stability. The fractal hypothesis. Biophys J. 1985 Sep;48(3):525–528. doi: 10.1016/S0006-3495(85)83808-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldberger A. L., Findley L. J., Blackburn M. R., Mandell A. J. Nonlinear dynamics in heart failure: implications of long-wavelength cardiopulmonary oscillations. Am Heart J. 1984 Mar;107(3):612–615. doi: 10.1016/0002-8703(84)90120-0. [DOI] [PubMed] [Google Scholar]
  5. Goldberger A. L., Goldwater D., Bhargava V. Atropine unmasks bed-rest effect: a spectral analysis of cardiac interbeat intervals. J Appl Physiol (1985) 1986 Nov;61(5):1843–1848. doi: 10.1152/jappl.1986.61.5.1843. [DOI] [PubMed] [Google Scholar]
  6. Goldberger A. L., Shabetai R., Bhargava V., West B. J., Mandell A. J. Nonlinear dynamics, electrical alternans, and pericardial tamponade. Am Heart J. 1984 Jun;107(6):1297–1299. doi: 10.1016/0002-8703(84)90301-6. [DOI] [PubMed] [Google Scholar]
  7. Goldberger A. L., West B. J. Applications of nonlinear dynamics to clinical cardiology. Ann N Y Acad Sci. 1987;504:195–213. doi: 10.1111/j.1749-6632.1987.tb48733.x. [DOI] [PubMed] [Google Scholar]
  8. Ideker R. E., Klein G. J., Harrison L., Smith W. M., Kasell J., Reimer K. A., Wallace A. G., Gallagher J. J. The transition to ventricular fibrillation induced by reperfusion after acute ischemia in the dog: a period of organized epicardial activation. Circulation. 1981 Jun;63(6):1371–1379. doi: 10.1161/01.cir.63.6.1371. [DOI] [PubMed] [Google Scholar]
  9. Kariniemi V., Ammälä P. Short-term variability of fetal heart rate during pregnancies with normal and insufficient placental function. Am J Obstet Gynecol. 1981 Jan;139(1):33–37. doi: 10.1016/0002-9378(81)90407-5. [DOI] [PubMed] [Google Scholar]
  10. Kobayashi M., Musha T. 1/f fluctuation of heartbeat period. IEEE Trans Biomed Eng. 1982 Jun;29(6):456–457. doi: 10.1109/TBME.1982.324972. [DOI] [PubMed] [Google Scholar]
  11. Lefèvre J. Teleonomical optimization of a fractal model of the pulmonary arterial bed. J Theor Biol. 1983 May 21;102(2):225–248. doi: 10.1016/0022-5193(83)90361-2. [DOI] [PubMed] [Google Scholar]
  12. Lewis M., Rees D. C. Fractal surfaces of proteins. Science. 1985 Dec 6;230(4730):1163–1165. doi: 10.1126/science.4071040. [DOI] [PubMed] [Google Scholar]
  13. MOE G. K., RHEINBOLDT W. C., ABILDSKOV J. A. A COMPUTER MODEL OF ATRIAL FIBRILLATION. Am Heart J. 1964 Feb;67:200–220. doi: 10.1016/0002-8703(64)90371-0. [DOI] [PubMed] [Google Scholar]
  14. Montroll E. W., Shlesinger M. F. On 1/f noise and other distributions with long tails. Proc Natl Acad Sci U S A. 1982 May;79(10):3380–3383. doi: 10.1073/pnas.79.10.3380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Musha T., Kosugi Y., Matsumoto G., Suzuki M. Modulation of the time relation of action potential impulses propagating along an axon. IEEE Trans Biomed Eng. 1981 Sep;28(9):616–623. doi: 10.1109/TBME.1981.324751. [DOI] [PubMed] [Google Scholar]
  16. Myers G. A., Martin G. J., Magid N. M., Barnett P. S., Schaad J. W., Weiss J. S., Lesch M., Singer D. H. Power spectral analysis of heart rate variability in sudden cardiac death: comparison to other methods. IEEE Trans Biomed Eng. 1986 Dec;33(12):1149–1156. doi: 10.1109/TBME.1986.325694. [DOI] [PubMed] [Google Scholar]
  17. Neubauer B., Gundersen H. J. Analysis of heart rate variations in patients with multiple sclerosis. A simple measure of autonomic nervous disturbances using an ordinary ECG. J Neurol Neurosurg Psychiatry. 1978 May;41(5):417–419. doi: 10.1136/jnnp.41.5.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pomeranz B., Macaulay R. J., Caudill M. A., Kutz I., Adam D., Gordon D., Kilborn K. M., Barger A. C., Shannon D. C., Cohen R. J. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985 Jan;248(1 Pt 2):H151–H153. doi: 10.1152/ajpheart.1985.248.1.H151. [DOI] [PubMed] [Google Scholar]
  19. Schlesinger M. F. Fractal time and 1/f noise in complex systems. Ann N Y Acad Sci. 1987;504:214–228. doi: 10.1111/j.1749-6632.1987.tb48734.x. [DOI] [PubMed] [Google Scholar]
  20. Sernetz M., Gelléri B., Hofmann J. The organism as bioreactor. Interpretation of the reduction law of metabolism in terms of heterogeneous catalysis and fractal structure. J Theor Biol. 1985 Nov 21;117(2):209–230. doi: 10.1016/s0022-5193(85)80218-6. [DOI] [PubMed] [Google Scholar]
  21. Simson M. B. Use of signals in the terminal QRS complex to identify patients with ventricular tachycardia after myocardial infarction. Circulation. 1981 Aug;64(2):235–242. doi: 10.1161/01.cir.64.2.235. [DOI] [PubMed] [Google Scholar]
  22. Smith J. M., Cohen R. J. Simple finite-element model accounts for wide range of cardiac dysrhythmias. Proc Natl Acad Sci U S A. 1984 Jan;81(1):233–237. doi: 10.1073/pnas.81.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. WEIBEL E. R., GOMEZ D. M. Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science. 1962 Aug 24;137(3530):577–585. doi: 10.1126/science.137.3530.577. [DOI] [PubMed] [Google Scholar]
  24. Waddington J. L., MacCulloch M. J., Sambrooks J. E. Resting heartrate variability in man declines with age. Experientia. 1979 Sep 15;35(9):1197–1198. doi: 10.1007/BF01963285. [DOI] [PubMed] [Google Scholar]
  25. West B. J., Bhargava V., Goldberger A. L. Beyond the principle of similitude: renormalization in the bronchial tree. J Appl Physiol (1985) 1986 Mar;60(3):1089–1097. doi: 10.1152/jappl.1986.60.3.1089. [DOI] [PubMed] [Google Scholar]
  26. Worley S. J., Swain J. L., Colavita P. G., Smith W. M., Ideker R. E. Development of an endocardial-epicardial gradient of activation rate during electrically induced, sustained ventricular fibrillation in dogs. Am J Cardiol. 1985 Mar 1;55(6):813–820. doi: 10.1016/0002-9149(85)90162-6. [DOI] [PubMed] [Google Scholar]
  27. van den Berg R. J., de Goede J., Verveen A. A. Conductance fluctuations in Ranvier nodes. Pflugers Arch. 1975 Oct 16;360(1):17–23. doi: 10.1007/BF00584323. [DOI] [PubMed] [Google Scholar]

Articles from The Yale Journal of Biology and Medicine are provided here courtesy of Yale Journal of Biology and Medicine

RESOURCES