Skip to main content
The Yale Journal of Biology and Medicine logoLink to The Yale Journal of Biology and Medicine
. 1988 Jan-Feb;61(1):51–60.

Methods for determination of optic nerve blood flow.

L C Glazer 1
PMCID: PMC2590406  PMID: 3284212

Abstract

A variety of studies have been conducted over the past two decades to determine if decreased optic nerve blood flow has a role in the etiology of glaucomatous nerve damage. Five basic methods have been employed in examining blood flow. Invasive studies, utilizing electrodes placed in the optic nerve head, represent one of the first attempts to measure blood flow. More recently, the methodologies have included axoplasmic flow analysis, microspheres, radioactive tracers such as iodoantipyrine, and laser doppler measurements. The results of these studies are inconclusive and frequently contradictory. When the studies are grouped by methodology, only the iodoantipyrine data are consistent. While each of the experimental techniques has limitations, iodoantipyrine appears to have better resolution than either invasive studies or microspheres.

Full text

PDF
51

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alm A., Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res. 1973 Jan 1;15(1):15–29. doi: 10.1016/0014-4835(73)90185-1. [DOI] [PubMed] [Google Scholar]
  2. Alm A., Bill A. The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand. 1972 Mar;84(3):306–319. doi: 10.1111/j.1748-1716.1972.tb05182.x. [DOI] [PubMed] [Google Scholar]
  3. Anderson D. R., Hendrickson A. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol. 1974 Oct;13(10):771–783. [PubMed] [Google Scholar]
  4. Anderson D. R., Hendrickson A. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol. 1974 Oct;13(10):771–783. [PubMed] [Google Scholar]
  5. Armaly M. F., Araki M. Optic nerve circulation and ocular pressure. Invest Ophthalmol. 1975 Oct;14(10):724–731. [PubMed] [Google Scholar]
  6. Armaly M. F., Araki M. Optic nerve circulation and ocular pressure: contribution of central retinal artery and short posterior ciliary arteries and the effect on oxygen tension. Invest Ophthalmol. 1975 Jun;14(6):475–479. [PubMed] [Google Scholar]
  7. Buckberg G. D., Luck J. C., Payne D. B., Hoffman J. I., Archie J. P., Fixler D. E. Some sources of error in measuring regional blood flow with radioactive microspheres. J Appl Physiol. 1971 Oct;31(4):598–604. doi: 10.1152/jappl.1971.31.4.598. [DOI] [PubMed] [Google Scholar]
  8. Caprioli J., Spaeth G. L. Comparison of the optic nerve head in high- and low-tension glaucoma. Arch Ophthalmol. 1985 Aug;103(8):1145–1149. doi: 10.1001/archopht.1985.01050080057020. [DOI] [PubMed] [Google Scholar]
  9. Caprioli J., Spaeth G. L. Comparison of visual field defects in the low-tension glaucomas with those in the high-tension glaucomas. Am J Ophthalmol. 1984 Jun;97(6):730–737. doi: 10.1016/0002-9394(84)90505-1. [DOI] [PubMed] [Google Scholar]
  10. Eckman W. W., Phair R. D., Fenstermacher J. D., Patlak C. S., Kennedy C., Sokoloff L. Permeability limitation in estimation of local brain blood flow with [14C]antipyrine. Am J Physiol. 1975 Jul;229(1):215–221. doi: 10.1152/ajplegacy.1975.229.1.215. [DOI] [PubMed] [Google Scholar]
  11. Ernest J. T. Autoregulation of optic-disk oxygen tension. Invest Ophthalmol. 1974 Feb;13(2):101–106. [PubMed] [Google Scholar]
  12. Ernest J. T. Optic disc blood flow. Trans Ophthalmol Soc U K. 1976 Sep;96(3):348–351. [PubMed] [Google Scholar]
  13. Gaasterland D., Kupfer C. Experimental glaucoma in the rhesus monkey. Invest Ophthalmol. 1974 Jun;13(6):455–457. [PubMed] [Google Scholar]
  14. Geijer C., Bill A. Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci. 1979 Oct;18(10):1030–1042. [PubMed] [Google Scholar]
  15. Goldman H., Sapirstein L. A. Brain blood flow in the conscious and anesthetized rat. Am J Physiol. 1973 Jan;224(1):122–126. doi: 10.1152/ajplegacy.1973.224.1.122. [DOI] [PubMed] [Google Scholar]
  16. Herkenham M., Sokoloff L. Quantitative receptor autoradiography: tissue defatting eliminates differential self-absorption of tritium radiation in gray and white matter of brain. Brain Res. 1984 Nov 12;321(2):363–368. doi: 10.1016/0006-8993(84)90194-x. [DOI] [PubMed] [Google Scholar]
  17. Jay W. M., Aziz M. Z., Green K. Effect of digital massage on intraocular pressure and ocular and optic nerve blood flow. Acta Ophthalmol (Copenh) 1986 Feb;64(1):58–62. doi: 10.1111/j.1755-3768.1986.tb06872.x. [DOI] [PubMed] [Google Scholar]
  18. Jay W. M., Aziz M. Z., Green K. Effect of honan intraocular pressure reducer on ocular and optic nerve blood flow in phakic rabbit eyes. Acta Ophthalmol (Copenh) 1986 Feb;64(1):52–57. doi: 10.1111/j.1755-3768.1986.tb06871.x. [DOI] [PubMed] [Google Scholar]
  19. Katz M. A., Blantz R. C., Rector F. C., Jr, Seldin D. W. Measurement of intrarenal blood flow. I. Analysis of microsphere method. Am J Physiol. 1971 Jun;220(6):1903–1913. doi: 10.1152/ajplegacy.1971.220.6.1903. [DOI] [PubMed] [Google Scholar]
  20. Kollaritis C. R., Goldman H., Murphy S., Kollarits F. J. Use of 14C-antipyrine for estimation of rhesus monkey eye blood flow. Invest Ophthalmol Vis Sci. 1976 Sep;15(9):740–745. [PubMed] [Google Scholar]
  21. Minckler D. S., Bunt A. H., Johanson G. W. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977 May;16(5):426–441. [PubMed] [Google Scholar]
  22. O'Day D. M., Fish M. B., Aronson S. B., Coon A., Pollycove M. Ocular blood flow measurement by nuclide labeled microspheres. Arch Ophthalmol. 1971 Aug;86(2):205–209. doi: 10.1001/archopht.1971.01000010207015. [DOI] [PubMed] [Google Scholar]
  23. Ochs S. Trophic functions of the neuron. 3. Mechanisms of neurotrophic interactions. Systems of material transport in nerve fibers (axoplasmic transport) related to nerve function and trophic control. Ann N Y Acad Sci. 1974 Mar 22;228(0):202–223. doi: 10.1111/j.1749-6632.1974.tb20511.x. [DOI] [PubMed] [Google Scholar]
  24. Quigley H. A., Addicks E. M. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol. 1981 Jan;99(1):137–143. doi: 10.1001/archopht.1981.03930010139020. [DOI] [PubMed] [Google Scholar]
  25. Quigley H. A., Hohman R. M., Addicks E. M., Green W. R. Blood vessels of the glaucomatous optic disc in experimental primate and human eyes. Invest Ophthalmol Vis Sci. 1984 Aug;25(8):918–931. [PubMed] [Google Scholar]
  26. Quigley H. A., Hohman R. M. Laser energy levels for trabecular meshwork damage in the primate eye. Invest Ophthalmol Vis Sci. 1983 Sep;24(9):1305–1307. [PubMed] [Google Scholar]
  27. Quigley H. A., Hohman R. M., Sanchez R., Addicks E. M. Optic nerve head blood flow in chronic experimental glaucoma. Arch Ophthalmol. 1985 Jul;103(7):956–962. doi: 10.1001/archopht.1985.01050070082035. [DOI] [PubMed] [Google Scholar]
  28. Quigley H., Anderson D. R. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol. 1976 Aug;15(8):606–616. [PubMed] [Google Scholar]
  29. Reivich M., Jehle J., Sokoloff L., Kety S. S. Measurement of regional cerebral blood flow with antipyrine-14C in awake cats. J Appl Physiol. 1969 Aug;27(2):296–300. doi: 10.1152/jappl.1969.27.2.296. [DOI] [PubMed] [Google Scholar]
  30. Riva C. E., Grunwald J. E., Sinclair S. H. Laser Doppler measurement of relative blood velocity in the human optic nerve head. Invest Ophthalmol Vis Sci. 1982 Feb;22(2):241–248. [PubMed] [Google Scholar]
  31. Rudolph A. M., Heymann M. A. The circulation of the fetus in utero. Methods for studying distribution of blood flow, cardiac output and organ blood flow. Circ Res. 1967 Aug;21(2):163–184. doi: 10.1161/01.res.21.2.163. [DOI] [PubMed] [Google Scholar]
  32. Rundquist I., Smith Q. R., Michel M. E., Ask P., Oberg P. A., Rapoport S. I. Sciatic nerve blood flow measured by laser Doppler flowmetry and [14C]iodoantipyrine. Am J Physiol. 1985 Mar;248(3 Pt 2):H311–H317. doi: 10.1152/ajpheart.1985.248.3.H311. [DOI] [PubMed] [Google Scholar]
  33. Sakurada O., Kennedy C., Jehle J., Brown J. D., Carbin G. L., Sokoloff L. Measurement of local cerebral blood flow with iodo [14C] antipyrine. Am J Physiol. 1978 Jan;234(1):H59–H66. doi: 10.1152/ajpheart.1978.234.1.H59. [DOI] [PubMed] [Google Scholar]
  34. Sokoloff L. Mapping of local cerebral functional activity by measurement of local cerebral glucose utilization with [14C]deoxyglucose. Brain. 1979 Dec;102(4):653–668. doi: 10.1093/brain/102.4.653. [DOI] [PubMed] [Google Scholar]
  35. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  36. Sossi N., Anderson D. R. Blockage of axonal transport in optic nerve induced by elevation of intraocular pressure. Effect of arterial hypertension induced by angiotensin I. Arch Ophthalmol. 1983 Jan;101(1):94–97. doi: 10.1001/archopht.1983.01040010096017. [DOI] [PubMed] [Google Scholar]
  37. Sossi N., Anderson D. R. Effect of elevated intraocular pressure on blood flow. Occurrence in cat optic nerve head studied with iodoantipyrine I 125. Arch Ophthalmol. 1983 Jan;101(1):98–101. doi: 10.1001/archopht.1983.01040010100018. [DOI] [PubMed] [Google Scholar]
  38. Sperber G. O., Bill A. Blood flow and glucose consumption in the optic nerve, retina and brain: effects of high intraocular pressure. Exp Eye Res. 1985 Nov;41(5):639–653. doi: 10.1016/0014-4835(85)90036-3. [DOI] [PubMed] [Google Scholar]
  39. Stern M. D., Lappe D. L., Bowen P. D., Chimosky J. E., Holloway G. A., Jr, Keiser H. R., Bowman R. L. Continuous measurement of tissue blood flow by laser-Doppler spectroscopy. Am J Physiol. 1977 Apr;232(4):H441–H448. doi: 10.1152/ajpheart.1977.232.4.H441. [DOI] [PubMed] [Google Scholar]
  40. Wallin J. D., Rector F. C., Jr, Seldin D. W. Measurement of intrarenal plasma flow with antiglomerular basement-membrane antibody. Am J Physiol. 1971 Dec;221(6):1621–1628. doi: 10.1152/ajplegacy.1971.221.6.1621. [DOI] [PubMed] [Google Scholar]
  41. Weinstein J. M., Funsch D., Page R. B., Brennan R. W. Optic nerve blood flow and its regulation. Invest Ophthalmol Vis Sci. 1982 Nov;23(5):640–645. [PubMed] [Google Scholar]

Articles from The Yale Journal of Biology and Medicine are provided here courtesy of Yale Journal of Biology and Medicine

RESOURCES