Abstract
A lytic bacteriophage for Actinomyces viscosus T14V (the reference strain for actinomyces coaggregation group A) was isolated from raw sewage. This phage, designated BF307, also lysed the T14V-derived nonfimbriated mutant PK455-2 as well as A. viscosus MG-1 and T14AV but not the other serotype 2 or serotype 1 strains of this species that were tested or any of nine Actinomyces naeslundii isolates. Phages BF307 belonged to Bradley morphological group C and was similar in appearance to the A. viscosus MG-1 phages Av-1 and Av-3, which do not productively infect A. viscosus T14V. A. viscosus MG-1 mutants selected for resistance to phage BF307, Av-3, or CT7 (a human dental plaque isolate with the same host range as BF307) were coresistant to the other two phages but sensitive to Av-1. These results indicate that the receptors on A. viscosus MG-1 for phages BF307, Av-3, and CT7 are identical or share a common precursor and that the receptor for phage Av-1 is distinct. Comparison of the genomes of BF307, Av-3, and CT7 revealed that their DNAs were similar in size but distinguishable by restriction analysis. Two altered coaggregation phenotypes were identified among the phage BF307-resistant mutants of strains MG-1, T14V, T14AV, and PK455-2. Class I mutants had lost the ability to interact with coaggregation group 1 streptococci, and class II mutants did not coaggregate with either group 1 or group 2 streptococci. These results are consistent with the proposal that the phage BF307 receptor on these A. viscosus strains is related to one of the structures that mediates coaggregation with oral streptococci. A model to delineate the various coaggregation mediators on the surface of actinomyces coaggregation group A cells is presented, and the use of these phages to probe surface components of human oral actinomyces strains is discussed.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradley D. E. Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev. 1967 Dec;31(4):230–314. doi: 10.1128/br.31.4.230-314.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brecher S. M., van Houte J., Hammond B. F. Role of colonization in the virulence of Actinomyces viscosus strains T14-Vi and T14-Av. Infect Immun. 1978 Nov;22(2):603–614. doi: 10.1128/iai.22.2.603-614.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buxton R. S. Genetic analysis of Escherichia coli K12 mutants resistant to bacteriophage BF23 and the E-group colicins. Mol Gen Genet. 1971;113(2):154–156. doi: 10.1007/BF00333188. [DOI] [PubMed] [Google Scholar]
- Cisar J. O., Curl S. H., Kolenbrander P. E., Vatter A. E. Specific absence of type 2 fimbriae on a coaggregation-defective mutant of Actinomyces viscosus T14V. Infect Immun. 1983 May;40(2):759–765. doi: 10.1128/iai.40.2.759-765.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cisar J. O., Kolenbrander P. E., McIntire F. C. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect Immun. 1979 Jun;24(3):742–752. doi: 10.1128/iai.24.3.742-752.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtiss R., 3rd Bacterial conjugation. Annu Rev Microbiol. 1969;23:69–136. doi: 10.1146/annurev.mi.23.100169.000441. [DOI] [PubMed] [Google Scholar]
- Delisle A. L., Nauman R. K., Minah G. E. Isolation of a bacteriophage for actinomyces viscosus. Infect Immun. 1978 Apr;20(1):303–306. doi: 10.1128/iai.20.1.303-306.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donkersloot J. A., Cisar J. O., Wax M. E., Harr R. J., Chassy B. M. Expression of Actinomyces viscosus antigens in Escherichia coli: cloning of a structural gene (fimA) for type 2 fimbriae. J Bacteriol. 1985 Jun;162(3):1075–1078. doi: 10.1128/jb.162.3.1075-1078.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hazelbauer G. L. Role of the receptor for bacteriophage lambda in the functioning of the maltose chemoreceptor of Escherichia coli. J Bacteriol. 1975 Oct;124(1):119–126. doi: 10.1128/jb.124.1.119-126.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiroki H., Shiiki J., Handa A., Totsuka M., Nakamura O. Isolation of bacteriophages specific for the genus Veillonella. Arch Oral Biol. 1976;21(3):215–217. doi: 10.1016/0003-9969(76)90132-1. [DOI] [PubMed] [Google Scholar]
- Kiley P., Holt S. C. Characterization of the lipopolysaccharide from Actinobacillus actinomycetemcomitans Y4 and N27. Infect Immun. 1980 Dec;30(3):862–873. doi: 10.1128/iai.30.3.862-873.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolenbrander P. E., Inouye Y., Holdeman L. V. New Actinomyces and Streptococcus coaggregation groups among human oral isolates from the same site. Infect Immun. 1983 Aug;41(2):501–506. doi: 10.1128/iai.41.2.501-506.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolenbrander P. E. Isolation and characterization of coaggregation-defective mutants of Actinomyces viscosus, Actinomyces naeslundii, and Streptococcus sanguis. Infect Immun. 1982 Sep;37(3):1200–1208. doi: 10.1128/iai.37.3.1200-1208.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leon O., Panos C. Cytotoxicity and inhibition of normal collagen synthesis in mouse fibroblasts by lipoteichoic acid from Streptococcus pyogenes type 12. Infect Immun. 1983 May;40(2):785–794. doi: 10.1128/iai.40.2.785-794.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manning P. A., Reeves P. Recipient ability of bacteriophage-resistant mutants of Escherichia coli K-12. J Bacteriol. 1975 Oct;124(1):576–577. doi: 10.1128/jb.124.1.576-577.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizuno J., Cisar J. O., Vatter A. E., Fennessey P. V., McIntire F. C. A factor from Actinomyces viscosus T14V that specifically aggregates Streptococcus sanguis H1. Infect Immun. 1983 Jun;40(3):1204–1213. doi: 10.1128/iai.40.3.1204-1213.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preus H. R., Olsen I., Namork E. Association between bacteriophage-infected Actinobacillus actinomycetemcomitans and rapid periodontal destruction. J Clin Periodontol. 1987 Apr;14(4):245–247. doi: 10.1111/j.1600-051x.1987.tb00974.x. [DOI] [PubMed] [Google Scholar]
- Stacey G., Pocratsky L. A., Puvanesarajah V. Bacteriophage that can distinguish between wild-type Rhizobium japonicum and a non-nodulating mutant. Appl Environ Microbiol. 1984 Jul;48(1):68–72. doi: 10.1128/aem.48.1.68-72.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevens R. H., Hammond B. F., Lai C. H. Characterization of an inducible bacteriophage from a leukotoxic strain of Actinobacillus actinomycetemcomitans. Infect Immun. 1982 Jan;35(1):343–349. doi: 10.1128/iai.35.1.343-349.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szmelcman S., Hofnung M. Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor. J Bacteriol. 1975 Oct;124(1):112–118. doi: 10.1128/jb.124.1.112-118.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tylenda C. A., Calvert C., Kolenbrander P. E., Tylenda A. Isolation of Actinomyces bacteriophage from human dental plaque. Infect Immun. 1985 Jul;49(1):1–6. doi: 10.1128/iai.49.1.1-6.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tylenda C. A., Enriquez E., Kolenbrander P. E., Delisle A. L. Simultaneous loss of bacteriophage receptor and coaggregation mediator activities in Actinomyces viscosus MG-1. Infect Immun. 1985 Apr;48(1):228–233. doi: 10.1128/iai.48.1.228-233.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang C. C., Newton A. An additional step in the transport of iron defined by the tonB locus of Escherichia coli. J Biol Chem. 1971 Apr 10;246(7):2147–2151. [PubMed] [Google Scholar]
- Yeung M. K., Chassy B. M., Cisar J. O. Cloning and expression of a type 1 fimbrial subunit of Actinomyces viscosus T14V. J Bacteriol. 1987 Apr;169(4):1678–1683. doi: 10.1128/jb.169.4.1678-1683.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

