Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1988 Jan;56(1):92–98. doi: 10.1128/iai.56.1.92-98.1988

A flagellar pocket membrane fraction from Trypanosoma brucei rhodesiense: immunogold localization and nonvariant immunoprotection.

J G Olenick 1, R Wolff 1, R K Nauman 1, J McLaughlin 1
PMCID: PMC259240  PMID: 3335412

Abstract

In contrast to the abundance of detailed information on variant-specific surface coat antigens of African trypanosomes, data on possible common or nonvariant antigens within these protozoa are surprisingly limited. In this study, the cellular localization and protective potential of a previously characterized flagellar pocket membrane (FPM) fraction were determined. Immunogold staining of live trypanosome suspensions at 0 to 4 degrees C by using anti-FPM hyperimmune serum raised in rabbits as the primary antibody revealed specific staining of the parasite surface at the emergence of the flagellum from the flagellar pocket. The same specificity of immunogold localization was obtained for each of three distinct variable antigenic types (VATs) of a serodeme of Trypanosoma brucei rhodesiense Wellcome strain. Products of translated mRNA preparations from each of the VATs were precipitated by the FPM antiserum and revealed identical banding patterns when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by autoradiography. Immunization of mice with FPM fraction protected them against infection by two of the VATs; the third VAT was afforded poor protection. This is the first demonstration of the combined cellular localization, nonvariant nature, and protective potential of a membrane fraction from African trypanosomes.

Full text

PDF
92

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN K. N., WILLIAMSON J. THE CHEMICAL COMPOSITION OF TRYPANOSOMES. IV. LOCATION OF ANTIGENS IN SUBCELLULAR FRACTIONS OF TRYPANOSOMA RHODESIENSE. Exp Parasitol. 1964 Feb;15:69–86. doi: 10.1016/0014-4894(64)90007-4. [DOI] [PubMed] [Google Scholar]
  2. Baltz T., Baltz D., Pautrizel R., Richet C., Lamblin G., Degand P. Chemical and immunological characterization of specific glycoproteins from Trypanosoma equiperdum variants. FEBS Lett. 1977 Oct 1;82(1):93–96. doi: 10.1016/0014-5793(77)80893-4. [DOI] [PubMed] [Google Scholar]
  3. Barry J. D. Capping of variable antigen on Trypanosoma brucei, and its immunological and biological significance. J Cell Sci. 1979 Jun;37:287–302. doi: 10.1242/jcs.37.1.287. [DOI] [PubMed] [Google Scholar]
  4. Barry J. D., Crowe J. S., Vickerman K. Instability of the Trypanosoma brucei rhodesiense metacyclic variable antigen repertoire. Nature. 1983 Dec 15;306(5944):699–701. doi: 10.1038/306699a0. [DOI] [PubMed] [Google Scholar]
  5. Bawden M. P. Whence comes Trypanosoma lewisi antigen which induces ablastic antibody: studies in the occult? Exp Parasitol. 1975 Dec;38(3):350–356. doi: 10.1016/0014-4894(75)90121-6. [DOI] [PubMed] [Google Scholar]
  6. Beat D. A., Stanley H. A., Choromański L., MacDonald A. B., Honigberg B. M. Nonvariant antigens limited to bloodstream forms of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. J Protozool. 1984 Nov;31(4):541–548. doi: 10.1111/j.1550-7408.1984.tb05499.x. [DOI] [PubMed] [Google Scholar]
  7. Borst P., Cross G. A. Molecular basis for trypanosome antigenic variation. Cell. 1982 Jun;29(2):291–303. doi: 10.1016/0092-8674(82)90146-5. [DOI] [PubMed] [Google Scholar]
  8. Brown K. N., Armstrong J. A., Valentine R. C. The ingestion of protein molecules by blood forms of Trypanosoma rhodesiense. Exp Cell Res. 1965 Aug;39(1):129–135. doi: 10.1016/0014-4827(65)90015-7. [DOI] [PubMed] [Google Scholar]
  9. Burgess D. E., Jerrells T. Molecular identity and location of invariant antigens on Trypanosoma brucei rhodesiense defined with monoclonal antibodies reactive with sera from trypanosomiasis patients. Infect Immun. 1985 Dec;50(3):893–899. doi: 10.1128/iai.50.3.893-899.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. CUNNINGHAM M. P., VICKERMAN K. Antigenic analysis in the Trypanosoma brucei group, using the agglutination reaction. Trans R Soc Trop Med Hyg. 1962 Jan;56:48–59. doi: 10.1016/0035-9203(62)90088-3. [DOI] [PubMed] [Google Scholar]
  11. Cherian P. V., Dusanic D. G. Trypanosoma lewisi: ultrastructural observations of surface antigen movement induced by antibody. Exp Parasitol. 1978 Feb;44(1):14–25. doi: 10.1016/0014-4894(78)90076-0. [DOI] [PubMed] [Google Scholar]
  12. Cross G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975 Dec;71(3):393–417. doi: 10.1017/s003118200004717x. [DOI] [PubMed] [Google Scholar]
  13. Donelson J. E., Rice-Ficht A. C. Molecular biology of trypanosome antigenic variation. Microbiol Rev. 1985 Jun;49(2):107–125. doi: 10.1128/mr.49.2.107-125.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Englund P. T., Hajduk S. L., Marini J. C. The molecular biology of trypanosomes. Annu Rev Biochem. 1982;51:695–726. doi: 10.1146/annurev.bi.51.070182.003403. [DOI] [PubMed] [Google Scholar]
  15. Gray A. R. Some principles of the immunology of trypanosomiasis. Bull World Health Organ. 1967;37(2):177–193. [PMC free article] [PubMed] [Google Scholar]
  16. Langreth S. G., Balber A. E. Protein uptake and digestion in bloodstream and culture forms of Trypanosoma brucei. J Protozool. 1975 Feb;22(1):40–53. doi: 10.1111/j.1550-7408.1975.tb00943.x. [DOI] [PubMed] [Google Scholar]
  17. McLaughlin J. Evidence for lipid-protein interactions in the attachment of antigens to a low-density membrane fraction isolated from Trypanosoma rhodesiense. Infect Immun. 1984 Jan;43(1):294–301. doi: 10.1128/iai.43.1.294-301.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McLaughlin J. Subcellular distribution of particle-associated antigens in Trypanosoma rhodesiense. J Immunol. 1982 Jun;128(6):2656–2663. [PubMed] [Google Scholar]
  19. McLaughlin J. Trypanosoma rhodesiense: antigenicity and immunogenicity of flagellar pocket membrane components. Exp Parasitol. 1987 Aug;64(1):1–11. doi: 10.1016/0014-4894(87)90002-6. [DOI] [PubMed] [Google Scholar]
  20. Melton D. W., Konecki D. S., Ledbetter D. H., Hejtmancik J. F., Caskey C. T. In vitro translation of hypoxanthine/guanine phosphoribosyltransferase mRNA: characterization of a mouse neuroblastoma cell line that has elevated levels of hypoxanthine/guanine phosphoribosyltransferase protein. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6977–6980. doi: 10.1073/pnas.78.11.6977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Olenick J. G., Travis R. W., Garson S. Trypanosoma rhodesiense: chemical and immunological characterization of variant-specific surface coat glycoproteins. Mol Biochem Parasitol. 1981 Aug;3(4):227–238. doi: 10.1016/0166-6851(81)90054-2. [DOI] [PubMed] [Google Scholar]
  22. Pearson T. W., Kar S. K., McGuire T. C., Lundin L. B. Trypanosome variable surface antigens: studies using two-dimensional gel electrophoresis and monoclonal antibodies. J Immunol. 1981 Mar;126(3):823–828. [PubMed] [Google Scholar]
  23. SEED J. R. THE CHARACTERIZATION OF ANTIGENS ISOLATED FROM TRYPANOSOMA RHODESIENSE. J Protozool. 1963 Nov;10:380–389. doi: 10.1111/j.1550-7408.1963.tb01692.x. [DOI] [PubMed] [Google Scholar]
  24. Vickerman K., Luckins A. G. Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody. Nature. 1969 Dec 13;224(5224):1125–1126. doi: 10.1038/2241125a0. [DOI] [PubMed] [Google Scholar]
  25. Wahl G. M., Hughes S. H., Capecchi M. R. Immunological characterization of hypoxanthine-guanine phosphoribosyl transferase mutants of mouse L cells: evidence for mutations at different loci in the HGPRT gene. J Cell Physiol. 1975 Apr;85(2 Pt 1):307–320. doi: 10.1002/jcp.1040850217. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES