Abstract
The Streptococcus mutans serotype c gtfA gene encodes a 55-kilodalton protein which catalyzes the synthesis of a small glucan (1.5 kilodaltons) from sucrose (J.P. Robeson, R.G. Barletta, and R. Curtiss III, J. Bacteriol. 153:211-221, 1983). To investigate the role of the GtfA enzyme in virulence, we constructed S. mutans gtfA mutants from three cariogenic serotype c strains. A plasmid that carried an erythromycin resistance determinant and an internal fragment of the gtfA gene but that was unable to replicate in streptococci was used to transform S. mutans. The erythromycin-resistant transformants carried a partial duplication of the internal gtfA fragment, because of the integration of plasmid sequences within the S. mutans gtfA gene, which also resulted in the inactivation of the gtfA gene. This was verified by Southern DNA hybridization analysis and Western blot studies of cellular protein extracts of the mutant strains with GtfA antiserum. Mutants were fully virulent in both germfree and conventional rats. These results do not rule out the involvement of the GtfA protein in virulence. Pucci and Macrina (M.J. Pucci and F.L. Macrina, Infect. Immun. 54:77-84, 1986) have suggested that the GtfA enzyme synthesizes a primer for water-insoluble glucans. Another S. mutans protein, presumably a glucosyltransferase, may have a similar function and, thus, may obscure the relevance of the GtfA enzyme in pathogenesis.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aoki H., Shiroza T., Hayakawa M., Sato S., Kuramitsu H. K. Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun. 1986 Sep;53(3):587–594. doi: 10.1128/iai.53.3.587-594.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrett J. F., Barrett T. A., Curtiss R., 3rd Purification and partial characterization of the multicomponent dextranase complex of Streptococcus sobrinus and cloning of the dextranase gene. Infect Immun. 1987 Mar;55(3):792–802. doi: 10.1128/iai.55.3.792-802.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Behnke D., Ferretti J. J. Molecular cloning of an erythromycin resistance determinant in streptococci. J Bacteriol. 1980 Nov;144(2):806–813. doi: 10.1128/jb.144.2.806-813.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birkhed D., Tanzer J. M. Glycogen synthesis pathway in Streptococcus mutans strain NCTC 10449S and its glycogen synthesis-defective mutant 805. Arch Oral Biol. 1979;24(1):67–73. doi: 10.1016/0003-9969(79)90177-8. [DOI] [PubMed] [Google Scholar]
- Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
- Bolivar F., Rodriguez R. L., Betlach M. C., Boyer H. W. Construction and characterization of new cloning vehicles. I. Ampicillin-resistant derivatives of the plasmid pMB9. Gene. 1977;2(2):75–93. doi: 10.1016/0378-1119(77)90074-9. [DOI] [PubMed] [Google Scholar]
- Carlsson J. A levansucrase from Streptococcus mutans. Caries Res. 1970;4(2):97–113. doi: 10.1159/000259632. [DOI] [PubMed] [Google Scholar]
- Chassy B. M., Bielawski R. M., Beall J. R., Porter E. V., Krichevsky M. I., Donkersloot J. A. Extracellular invertase in Streptococcus mutans and Streptococcus salivarius. Life Sci. 1974 Sep 15;15(6):1173–1180. doi: 10.1016/s0024-3205(74)80013-5. [DOI] [PubMed] [Google Scholar]
- Chassy B. M., Porter E. V. Initial characterization of sucrose-6-phosphate hydrolase from Streptococcus mutans and its apparent identity with intracellular invertase. Biochem Biophys Res Commun. 1979 Jul 12;89(1):307–314. doi: 10.1016/0006-291x(79)90979-3. [DOI] [PubMed] [Google Scholar]
- Clark-Curtiss J. E., Jacobs W. R., Docherty M. A., Ritchie L. R., Curtiss R., 3rd Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae. J Bacteriol. 1985 Mar;161(3):1093–1102. doi: 10.1128/jb.161.3.1093-1102.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtiss R., 3rd Genetic analysis of Streptococcus mutans virulence. Curr Top Microbiol Immunol. 1985;118:253–277. doi: 10.1007/978-3-642-70586-1_14. [DOI] [PubMed] [Google Scholar]
- Dugaiczyk A., Boyer H. W., Goodman H. M. Ligation of EcoRI endonuclease-generated DNA fragments into linear and circular structures. J Mol Biol. 1975 Jul 25;96(1):171–184. doi: 10.1016/0022-2836(75)90189-8. [DOI] [PubMed] [Google Scholar]
- Ferrari F. A., Nguyen A., Lang D., Hoch J. A. Construction and properties of an integrable plasmid for Bacillus subtilis. J Bacteriol. 1983 Jun;154(3):1513–1515. doi: 10.1128/jb.154.3.1513-1515.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukui K., Fukui Y., Moriyama T. Purification and properties of dextransucrase and invertase from Streptococcus mutans. J Bacteriol. 1974 Jun;118(3):796–804. doi: 10.1128/jb.118.3.796-804.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamada S., Koga T., Okahashi N. Characterization of a mutant of serotype g Streptococcus mutans strain 6715 lacking dextran-induced agglutination. Zentralbl Bakteriol Mikrobiol Hyg A. 1983 May;254(3):343–351. [PubMed] [Google Scholar]
- Hansen J. B., Abiko Y., Curtiss R., 3rd Characterization of the Streptococcus mutans plasmid pva318 cloned into Escherichia coli. Infect Immun. 1981 Mar;31(3):1034–1043. doi: 10.1128/iai.31.3.1034-1043.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
- Macrina F. L., Evans R. P., Tobian J. A., Hartley D. L., Clewell D. B., Jones K. R. Novel shuttle plasmid vehicles for Escherichia-Streptococcus transgeneric cloning. Gene. 1983 Nov;25(1):145–150. doi: 10.1016/0378-1119(83)90176-2. [DOI] [PubMed] [Google Scholar]
- Morrison D. A., Trombe M. C., Hayden M. K., Waszak G. A., Chen J. D. Isolation of transformation-deficient Streptococcus pneumoniae mutants defective in control of competence, using insertion-duplication mutagenesis with the erythromycin resistance determinant of pAM beta 1. J Bacteriol. 1984 Sep;159(3):870–876. doi: 10.1128/jb.159.3.870-876.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murchison H., Larrimore S., Hull S., Curtiss R., 3rd Isolation and characterization of Streptococcus mutans mutants with altered cellular morphology or chain length. Infect Immun. 1982 Oct;38(1):282–291. doi: 10.1128/iai.38.1.282-291.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okahashi N., Asakawa H., Koga T., Masuda N., Hamada S. Clinical isolates of Streptococcus mutans serotype c with altered colony morphology due to fructan synthesis. Infect Immun. 1984 Jun;44(3):617–622. doi: 10.1128/iai.44.3.617-622.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pucci M. J., Macrina F. L. Cloned gtfA gene of Streptococcus mutans LM7 alters glucan synthesis in Streptococcus sanguis. Infect Immun. 1985 Jun;48(3):704–712. doi: 10.1128/iai.48.3.704-712.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- St Martin E. J., Wittenberger C. L. Characterization of a phosphoenolpyruvate-dependent sucrose phosphotransferase system in Streptococcus mutans. Infect Immun. 1979 Jun;24(3):865–868. doi: 10.1128/iai.24.3.865-868.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wenham D. G., Davies R. M., Cole J. A. Insoluble glucan synthesis by mutansucrase as a determinant of the cariogenicity of Streptococcus mutans. J Gen Microbiol. 1981 Dec;127(2):407–415. doi: 10.1099/00221287-127-2-407. [DOI] [PubMed] [Google Scholar]