Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1988 Mar;56(3):613–618. doi: 10.1128/iai.56.3.613-618.1988

Susceptibility of HRS/J mice to listeriosis: macrophage activity.

W A Archinal 1, M S Wilder 1
PMCID: PMC259335  PMID: 2830193

Abstract

Macrophage functions, including phagocytosis and bactericidal and oxidative activities, were measured in highly susceptible Listeria monocytogenes-sensitive HRS/J homozygous and heterozygous mice. Phagocytic studies with both caseinate-elicited and L. monocytogenes-immune macrophages revealed comparable engulfment of latex particles, zymosan, and bacteria by mononuclear phagocytes obtained from all experimental mouse strains. Elicited macrophages cultivated from mutant hairless and heterozygous littermates exhibited a reduced capacity to control Listeria infection compared with cells derived from CD-1 mice. However, intracellular killing of the microorganisms by immune macrophages was comparable to that observed with the outbred controls. Studies on oxidative metabolic activities associated with the respiratory burst indicate that while intracellular nitroblue tetrazolium reduction was comparable for macrophages cultivated from all mouse strains, the liberation of superoxide anion and chemiluminescence responses were significantly diminished in caseinate-elicited HRS/J cells. Moreover, immune elicited hr/hr and hr/+ macrophages generated oxidative species at levels comparable to that observed with cells derived from resistant animals. Thus, immunologically elicited HRS/J mice are capable of responding to sublethal Listeria infection with heightened antibacterial and oxidative activities.

Full text

PDF
613

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
  2. Archinal W. A., Wilder M. S. Susceptibility of HRS/J mice to listeriosis: dynamics of infection. Infect Immun. 1988 Mar;56(3):607–612. doi: 10.1128/iai.56.3.607-612.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beaman L., Beaman B. L. The role of oxygen and its derivatives in microbial pathogenesis and host defense. Annu Rev Microbiol. 1984;38:27–48. doi: 10.1146/annurev.mi.38.100184.000331. [DOI] [PubMed] [Google Scholar]
  4. Cheers C., McKenzie I. F. Resistance and susceptibility of mice to bacterial infection: genetics of listeriosis. Infect Immun. 1978 Mar;19(3):755–762. doi: 10.1128/iai.19.3.755-762.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Czuprynski C. J., Canono B. P., Henson P. M., Campbell P. A. Genetically determined resistance to listeriosis is associated with increased accumulation of inflammatory neutrophils and macrophages which have enhanced listericidal activity. Immunology. 1985 Jul;55(3):511–518. [PMC free article] [PubMed] [Google Scholar]
  6. Gervais F., Morris-Hooke A., Tran T. A., Skamene E. Analysis of macrophage bactericidal function in genetically resistant and susceptible mice by using the temperature-sensitive mutant of Listeria monocytogenes. Infect Immun. 1986 Nov;54(2):315–321. doi: 10.1128/iai.54.2.315-321.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gervais F., Stevenson M., Skamene E. Genetic control of resistance to Listeria monocytogenes: regulation of leukocyte inflammatory responses by the Hc locus. J Immunol. 1984 Apr;132(4):2078–2083. [PubMed] [Google Scholar]
  8. Godfrey R. W., Horton P. G., Wilder M. S. Time course of antilisterial activity by immunologically activated murine peritoneal macrophages. Infect Immun. 1983 Feb;39(2):532–539. doi: 10.1128/iai.39.2.532-539.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Godfrey R. W., Wilder M. S. Relationships between oxidative metabolism, macrophage activation, and antilisterial activity. J Leukoc Biol. 1984 Oct;36(4):533–543. doi: 10.1002/jlb.36.4.533. [DOI] [PubMed] [Google Scholar]
  10. Hahn H., Kaufmann S. H. The role of cell-mediated immunity in bacterial infections. Rev Infect Dis. 1981 Nov-Dec;3(6):1221–1250. doi: 10.1093/clinids/3.6.1221. [DOI] [PubMed] [Google Scholar]
  11. Harrington-Fowler L., Henson P. M., Wilder M. S. Fate of Listeria monocytogenes in resident and activated macrophages. Infect Immun. 1981 Jul;33(1):11–16. doi: 10.1128/iai.33.1.11-16.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harrington-Fowler L., Wilder M. S. Fate of Listeria monocytogenes in murine peritoneal macrophage subpopulations. Infect Immun. 1982 Jan;35(1):124–132. doi: 10.1128/iai.35.1.124-132.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnston R. B., Jr, Godzik C. A., Cohn Z. A. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med. 1978 Jul 1;148(1):115–127. doi: 10.1084/jem.148.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnston R. B., Jr, Sasada M., Guthrie L. A., Pabst M. J. Relationship between the enhanced oxidative metabolism and the enhanced microbicidal activity of activated macrophages. Adv Exp Med Biol. 1982;141:175–177. doi: 10.1007/978-1-4684-8088-7_18. [DOI] [PubMed] [Google Scholar]
  15. Karnovsky M. L., Lazdins J. K. Biochemical criteria for activated macrophages. J Immunol. 1978 Sep;121(3):809–813. [PubMed] [Google Scholar]
  16. Kaufmann S. H. Acquired resistance to facultative intracellular bacteria: relationship between persistence, cross-reactivity at the T-cell level, and capacity to stimulate cellular immunity of different Listeria strains. Infect Immun. 1984 Jul;45(1):234–241. doi: 10.1128/iai.45.1.234-241.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kongshavn P. A., Sadarangani C., Skamene E. Genetically determined differences in antibacterial activity of macrophages are expressed in the environment in which the macrophage precursors mature. Cell Immunol. 1980 Aug 1;53(2):341–349. doi: 10.1016/0008-8749(80)90334-2. [DOI] [PubMed] [Google Scholar]
  18. MACKANESS G. B. THE IMMUNOLOGICAL BASIS OF ACQUIRED CELLULAR RESISTANCE. J Exp Med. 1964 Jul 1;120:105–120. doi: 10.1084/jem.120.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mackaness G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med. 1969 May 1;129(5):973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mandel T. E., Cheers C. Resistance and susceptibility of mice to bacterial infection: histopathology of listeriosis in resistant and susceptible strains. Infect Immun. 1980 Dec;30(3):851–861. doi: 10.1128/iai.30.3.851-861.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mitsuyama M., Takeya K., Nomoto K., Shimotori S. Three phases of phagocyte contribution to resistance against Listeria monocytogenes. J Gen Microbiol. 1978 May;106(1):165–171. doi: 10.1099/00221287-106-1-165. [DOI] [PubMed] [Google Scholar]
  22. Morrissey P. J., Parkinson D. R., Schwartz R. S., Waksal S. D. Immunologic abnormalities in HRS/J mice. I. Specific deficit in T lymphocyte helper function in a mutant mouse. J Immunol. 1980 Oct;125(4):1558–1562. [PubMed] [Google Scholar]
  23. Nathan C. F., Brukner L. H., Silverstein S. C., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J Exp Med. 1979 Jan 1;149(1):84–99. doi: 10.1084/jem.149.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nathan C. F., Root R. K. Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med. 1977 Dec 1;146(6):1648–1662. doi: 10.1084/jem.146.6.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nathan C., Nogueira N., Juangbhanich C., Ellis J., Cohn Z. Activation of macrophages in vivo and in vitro. Correlation between hydrogen peroxide release and killing of Trypanosoma cruzi. J Exp Med. 1979 May 1;149(5):1056–1068. doi: 10.1084/jem.149.5.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. North R. J. The mitotic potential of fixed phagocytes in the liver as revealed during the development of cellular immunity. J Exp Med. 1969 Aug 1;130(2):315–326. doi: 10.1084/jem.130.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. North R. J. The relative importance of blood monocytes and fixed macrophages to the expression of cell-mediated immunity to infection. J Exp Med. 1970 Sep 1;132(3):521–534. doi: 10.1084/jem.132.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reske-Kunz A. B., Scheid M. P., Boyse E. A. Disproportion in T-cell subpopulations in immunodeficient mutant hr/hr mice. J Exp Med. 1979 Jan 1;149(1):228–233. doi: 10.1084/jem.149.1.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sadarangani C., Skamene E., Kongshavn P. A. Cellular basis for genetically determined enhanced resistance of certain mouse strains to listeriosis. Infect Immun. 1980 May;28(2):381–386. doi: 10.1128/iai.28.2.381-386.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Skamene E., Kongshavn P. A., Sachs D. H. Resistance to Listeria monocytogenes in mice: genetic control by genes that are not linked to the H-2 complex. J Infect Dis. 1979 Feb;139(2):228–231. doi: 10.1093/infdis/139.2.228. [DOI] [PubMed] [Google Scholar]
  31. Stevenson M. M., Kongshavn P. A., Skamene E. Genetic linkage of resistance to Listeria monocytogenes with macrophage inflammatory responses. J Immunol. 1981 Aug;127(2):402–407. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES