Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1988 Apr;56(4):762–765. doi: 10.1128/iai.56.4.762-765.1988

Use of transformation to construct Neisseria gonorrhoeae strains with altered lipooligosaccharides.

D C Stein 1, E F Petricoin 1, J M Griffiss 1, H Schneider 1
PMCID: PMC259367  PMID: 3126141

Abstract

DNA isolated from a nalidixic acid- and rifampin-resistant derivative of Neisseria gonorrhoeae serum-resistant strain 302 (MUG116), a strain that reacts with monoclonal antibody (MAb) 2-1-L8, was used to transform N. gonorrhoeae DOV, a serum-sensitive strain, to antibiotic resistance and/or reactivity with the MAb. MAb 2-1-L8 binds to a 3.6-kilodalton lipooligosaccharide (LOS). Reactivity with MAb 2-1-L8 transformed as a single marker and was unlinked to either of the antibiotic resistance markers. Immunoblot analysis of LOSs separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that new LOSs were synthesized in the transformed cells and that these LOSs corresponded to those of the DNA donor. Although multiple LOS components were made by the transformants, the MAb recognized only one. All transformants that were selected for on the basis of strong reactivity with MAb 2-1-L8 were serum resistant; however, the level of resistance correlated with the apparent loss of recipient LOS components. MAb 2-1-L8-reactive transformants that still produced DOV LOS components remained serum sensitive.

Full text

PDF
762

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Demarco de Hormaeche R., Bundell C., Chong H., Taylor D. W., Wildy P. Definition of a virulence-related antigen of Neisseria gonorrhoeae with monoclonal antibodies and lectins. J Infect Dis. 1986 Mar;153(3):535–546. doi: 10.1093/infdis/153.3.535. [DOI] [PubMed] [Google Scholar]
  2. Gregg C. R., Melly M. A., Hellerqvist C. G., Coniglio J. G., McGee Z. A. Toxic activity of purified lipopolysaccharide of Neisseria gonorrhoeae for human fallopian tube mucosa. J Infect Dis. 1981 Mar;143(3):432–439. doi: 10.1093/infdis/143.3.432. [DOI] [PubMed] [Google Scholar]
  3. Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 1983 Apr;154(1):269–277. doi: 10.1128/jb.154.1.269-277.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Rice P. A., Kasper D. L. Characterization of gonococcal antigens responsible for induction of bactericidal antibody in disseminated infection. J Clin Invest. 1977 Nov;60(5):1149–1158. doi: 10.1172/JCI108867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Schneider H., Griffiss J. M., Mandrell R. E., Jarvis G. A. Elaboration of a 3.6-kilodalton lipooligosaccharide, antibody against which is absent from human sera, is associated with serum resistance of Neisseria gonorrhoeae. Infect Immun. 1985 Dec;50(3):672–677. doi: 10.1128/iai.50.3.672-677.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Schneider H., Griffiss J. M., Williams G. D., Pier G. B. Immunological basis of serum resistance of Neisseria gonorrhoeae. J Gen Microbiol. 1982 Jan;128(1):13–22. doi: 10.1099/00221287-128-1-13. [DOI] [PubMed] [Google Scholar]
  7. Schneider H., Hale T. L., Zollinger W. D., Seid R. C., Jr, Hammack C. A., Griffiss J. M. Heterogeneity of molecular size and antigenic expression within lipooligosaccharides of individual strains of Neisseria gonorrhoeae and Neisseria meningitidis. Infect Immun. 1984 Sep;45(3):544–549. doi: 10.1128/iai.45.3.544-549.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Shafer W. M., Onunka V., Hitchcock P. J. A spontaneous mutant of Neisseria gonorrhoeae with decreased resistance to neutrophil granule proteins. J Infect Dis. 1986 May;153(5):910–917. doi: 10.1093/infdis/153.5.910. [DOI] [PubMed] [Google Scholar]
  9. Sidberry H., Kaufman B., Wright D. C., Sadoff J. Immunoenzymatic analysis by monoclonal antibodies of bacterial lipopolysaccharides after transfer to nitrocellulose. J Immunol Methods. 1985 Feb 11;76(2):299–305. doi: 10.1016/0022-1759(85)90307-2. [DOI] [PubMed] [Google Scholar]
  10. Stead A., Main J. S., Ward M. E., Watt P. J. Studies on lipopolysaccharides isolated from strains of Neisseria gonorrhoeae. J Gen Microbiol. 1975 May;88(1):123–131. doi: 10.1099/00221287-88-1-123. [DOI] [PubMed] [Google Scholar]
  11. Stein D. C., Young F. E., Tenover F. C., Clark V. L. Characterization of a chimeric beta-lactamase plasmid of Neisseria gonorrhoeae which can function in Escherichia coli. Mol Gen Genet. 1983;189(1):77–84. doi: 10.1007/BF00326058. [DOI] [PubMed] [Google Scholar]
  12. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
  13. Ward M. E., Lambden P. R., Heckels J. E., Watt P. J. The surface properties of Neisseria gonorrhoeae: determinants of susceptibility to antibody complement killing. J Gen Microbiol. 1978 Oct;108(2):205–212. doi: 10.1099/00221287-108-2-205. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES