Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2008 Dec 4.
Published in final edited form as: J Biomech Eng. 2008 Dec;130(6):061019. doi: 10.1115/1.2939273

Field Variable Associations With Scratch Orientation-Dependence of UHMWPE Wear: A Finite Element Analysis

Matthew C Paul †,*,, Liam P Glennon †,*, Thomas E Baer , Thomas D Brown †,*
PMCID: PMC2593842  NIHMSID: NIHMS57540  PMID: 19045548

Abstract

Background

Scratches on the metal bearing surface of metal-on-polyethylene total joint replacements have been found to appreciably accelerate abrasive/adhesive wear of polyethylene, and constitute a source of the considerable variability of wear rate seen within clinical cohorts. Scratch orientation with respect to the local direction of relative surface sliding is presumably a factor affecting instantaneous debris liberation during articulation.

Method of Approach

A three-dimensional local finite element model was developed of orientation-specific polyethylene articulation with a scratched metal counterface, to explore continuum-level stress/strain parameters potentially correlating with the orientation dependence of scratch wear in a corresponding physical experiment.

Results

Computed maximum stress values exceeded the yield strength of ultra-high molecular weight polyethylene (UHMWPE) for all scratch orientations, but did not vary appreciably among scratch orientations. Two continuum-level parameters judged most consistent overall with the direction dependence of experimental wear were: (1) cumulative compressive total normal strain in the direction of loading, and (2) maximum instantaneous compressive total normal strain transverse to the sliding direction.

Conclusions

Such stress/strain metrics could be useful in global computational models of wear acceleration, as surrogates to incorporate anisotropy of local metal surface roughening.

Keywords: wear, wear surrogate, scratch wear, scratch orientation, finite element analysis, arthroplasty, THA, TKA, polyethylene, UHMWPE

INTRODUCTION

Roughening of the metal counterface is responsible for substantial increase of wear rate in metal-on-polyethylene total joint replacements 14. This arguably is the cause of much of the variability in wear rates and wear directions seen among individual patients within study cohorts 57. Retrieved femoral heads often show scratch damage (burnishing) involving substantial fractions of the head surface area. Determination of a consistent and direct relationship between conventional tribologic mean surface roughness parameters (Ra, Rp, etc.) and ensuing implant wear has proven elusive 810. This has prompted several groups to study scratch patterns, toward a more definitive determinant of wear acceleration propensity 1,9,11. Scratches are widely regarded as resulting from 3rd body ingress into the bearing surface, the debris responsible being in forms such as bone mineral crystals, bone cement particles, radio-opacifier particles, porous coating particles, or metal frettings 8,9,1214. It has been argued that even some 3rd body particles that are (moderately) softer than the counterface are capable of causing scratching 14.

Scratch-induced wear of polyethylene (conventional or crosslinked) in total hip arthroplasty (THA) is due to local material failure. It seems reasonable that the direction of scratches on the metal counterface, relative to the direction of local sliding of the opposing polyethylene, would have an effect on the amount of wear produced during articulation. Past research involving scratch wear has presumed that the greatest wear occurs with scratches oriented perpendicular (90º) to the direction of motion 1522. Plausibly, however, more wear debris might well be liberated at a more acute attack angle, for example, from shearing-off of polyethylene by scratch lip asperities.

Recent developments in whole-joint computational wear simulation have proven helpful for understanding individual prosthesis design parameters 23, and for understanding the relative criticality of specific roughened regions in terms of accelerating wear 24. To date, however, such models have not addressed scratch directionality. Such anisotropic influence might be implemented at the global analysis level using appropriate continuum surrogates, given formal mappings of scratch topography. Toward that end, a local computational model was developed to phenomenologically survey which stress/strain tensorial component(s), or which metric(s) involving several such components, might show orientation dependence resembling that observed experimentally. Such surrogate(s) could be useful to account for scratch-direction-dependent wear acceleration in global computational models incorporating anisotropic surface damage.

MATERIALS AND METHODS

The physical experiment to which the (below-described) finite element model was matched involved reciprocal motions of arrays of 550 parallel scratches, diamond-scribed at 150-μm intervals on lapped (Ra < 100 nm) 316L stainless steel plates. These scratches had nominal lip heights, lip widths and furrow widths of 1.3, 22 and 23 μm, respectively (Figure 1). The width of inter-scratch spacing and the dimensions of the individual scratches (which resemble typical large scratches found on retrievals 15) were such as to produce a substantial volume of wear in a relatively short time. This severe degree of damage was not intended to directly replicate an in situ articular environment, but rather to generate sufficient wear to facilitate discrimination of the effect of scratch directionality.

Figure 1.

Figure 1

(Top) Laser scanning microscopy image of custom scratch profile created on 316L stainless steel. (Note the scale differences, which accentuate the scratch for visual emphasis.) (Bottom) Scratch profile (cross-section) employed as the counterface surface in the FE model.

Using a Scotch yoke pin-on-plate fixture installed on a biaxial load frame, the scratched counterface plate was driven reciprocally against a simple flat-ended cylindrical 25.4 mm diameter polyethylene pin1 (Figure 2), while loaded axially by 1269 N (nominal stress = 2.5 MPa). Parametric tests were conducted, in which the plate was moved across the polyethylene pin at angles of 0, 2.5, 5, 10, 15, 20, 30, 45, 60, and 90º relative to the scratch orientation. This was done both for both conventional polyethylene (CPE, HSS Reference, 4150HP, Poly Hi Solidur, Ft. Wayne, IN 25) and for highly crosslinked polyethylene (HXPE, DePuy Marathon®2, Warsaw, IN). The contact surface was kept immersed in 100% fetal bovine serum (treated with 10 mM EDTA and 0.01% sodium azide to prevent microbial growth), with wear periodically assessed gravimetrically. Tests were run to 90,000 cycles at an average (sinusoidal) sliding speed of 72 mm/s, with steady-state behavior typically ensuing at about 60,000 cycles.

Figure 2.

Figure 2

(A) Pin-plate articulating couple used in polyethylene-stainless steel reciprocating wear tester. The parallel scratches on surface of the metal platen are spaced 150 μm apart. (B) The corresponding polyethylene continuum mesh (white) and analytical scratched stainless steel surface (gray) utilized in the finite element model. (C) Enlarged view illustrating the spatial refinement of the polyethylene mesh in the region used for data registry.

A three-dimensional local finite element model (Figures 2,3) of this experiment was developed, to explore continuum-level stress/strain parameters potentially correlating with the direction-dependent interaction observed experimentally. Scratch-angle-specific meshes were generated to replicate the orientations of scratch traverse in the physical wear experiment. A loaded scratch was driven under displacement control across the polyethylene surface (Figure 3), with stress/strain data being registered at fiducial elements on the surface throughout course of scratch approach, over-passage and recession.

Figure 3.

Figure 3

Contour plot of instantaneous longitudinal normal stress during passage of a scratch oriented at 45°. Note the edge effect near the sides of the block. Fiducial nodes for stress registry were therefore located along the block centerline.

Finite element geometries were defined and meshed using PATRAN (r3, MSC.Software Corporation, Santa Ana, CA). These were input to the ABAQUS solver (v 6.4-2, ABAQUS, Inc., Pawtucket, RI), and were post-processed using ABAQUS/Viewer. Additional post-processing was performed using scripts custom-written in MATLAB 6.5.1 (The Mathworks, Inc., Natick, MA).

Although a suitably refined local finite element model for the entire testing interface would have been intractable, the physical system’s periodicity allowed isolating a single scratch. This assumed, effectively, that the same local instantaneous stress-strain history would recur over and over at a given point on the polyethylene surface, due to large numbers of over-passages of identical scratches. A provisional assumption was made (subsequently verified computationally) that the inter-scratch-lip distance, scratch lip height, polyethylene material properties, and loading were such that contact occurred only on scratch lips, rather than also on the (flat) inter-scratch regions of the metal surface. Accordingly, the corresponding load per unit scratch lip length (185 N/m for the 1269 N loads used experimentally) was employed in the computational model. Since the polyethylene pin remained entirely within the scratched region of the plate, the total length of scratch lip “line contact” (6.8 m) remained constant throughout the duty cycle. A rectangular polyethylene solid of finite size and appropriate aspect ratio 26 was generated for each specific scratch orientation.

Topographic data from a representative scratch lip profile were captured using a laser scanning microscope (0.01 μm depth accuracy, 0.3 μm sampling resolution), and directly transferred to the finite element model (Figure 1). Both the polyethylene surface and inter-scratch areas of the metal plate were modeled as flat.

Constitutively, UHMWPE was modeled using a fourth-order relationship for tangent modulus E as a function of von Mises stress, as reported by Cripton 27. An h-convergence series run for a nominally corresponding Hertzian contact problem 26 established that 0.3334 μm was an appropriate dimension for the polyethylene elements. A rigid-on-deformable local contact condition was invoked, with a Coulombic friction coefficient of 0.038 28. The analysis was quasi-static and modeled nonlinear contact geometry. Boundary conditions specified for the respective faces of the polyethylene block were configured so as to have the block approximate an infinite half-space 26.

The provisionally assumed simplification of the counterface topography to a single scratch lip was justified using a 2-D plane strain finite element simulation of sliding contact 26, executed for nonlinear UHMWPE, under the full prescribed service load of 185 N/m. Under these conditions, stress field “disturbances” from neighboring scratches were effectively isolated from each other, as indeed even were those from the two scratch lips on opposing sides of a given scratch furrow. A reference node representing the rigid Bezier surface of the scratch lip was utilized to prescribe the kinematics of the scratch lip.

A metric was formulated to reflect cumulative mechanical stimulus to the polyethylene during an event of scratch approach, over-passage, and recession. Full tensorial stress and strain data were output for five fiducial elements located centrally on the polyethylene, at serial instants (typically, 50) throughout the slide event. The overall putative stimulus Φ delivered to a given site on the polyethylene during a scratch encounter was indexed as follows. Consider a plausibly physically consequential instantaneous surrogate wear parameter φ. For example, φ might be an individual component of stress or an individual component of strain, or a function derived from some combination thereof (e.g., strain energy density). For a quasi-static sliding event, the cumulative stimulus Φ (Equation 1) can be characterized in terms of the history integral of the instantaneous value of the candidate stimulus parameter, i.e.,

Φ=t=t=φdt (1)

In the context of finite element analysis, where solutions are reported only at discrete times, and where (for tractability) the analysis is restricted only to the immediate “time neighborhood” of appreciable stress disturbance due to scratch encounter, the corresponding discretized expression (Equation (2)) is

Φ=i=i0i=imaxφiΔti (2)

Here, i0 is the first finite element solution increment for which supra-background stress ensues with oncoming scratch approach, imax is the last solution increment for which supra-background stress persists as the scratch recedes after over-passage, and Δti is the time increment between successive FEA solution reports.

The dimensional units of the kernel (φ) and the integrand (Φ ) varied, according to the specific composition of the candidate mechanical stimulus. To facilitate commonality of subsequent correlation comparisons of potential surrogates with experimentally observed volumetric wear rates (units of mm3/million cycles per mm2 of platen area, A, engaged), a dimensional compensation term γ was included in the surrogate computational volumetric wear () prediction expression, Equation (3).

V^=AΦγ (3)

For example, if the candidate kernel parameter φ was compressive normal stress σ22, the units of A *Φ would be mm2 (for A)* Nsecmm2 (for Φ), i.e. N ·sec, in which case γ would need to take units of mm3millioncyclesNsec. Thus, the units for each term in Equation (3) would be mm3millioncycles=mm2Nsecmm2mm3millioncyclesNsec.

Four separate registry treatments were considered to implement the Φ summation. The first of these involved summing all incremental kernel values, without segregating by algebraic sense; that is, negative values were combined with positive values, thus admitting the possibility of partial cancellation. In the second treatment, absolute values of each incremental φ were summed. The third and fourth treatments involved summing only the positive and only the negative φ values, respectively. Additionally, four non-summation-based metrics of mechanical stimulus were considered: the maximum peak-to-valley excursion for each kernel parameter φ, and that kernel parameter’s algebraic maximum, algebraic minimum, and absolute maximum throughout the scratch passage event.

Wear correlations with plastic strains areas were also considered, prompted by the localized scratch finite element model reported by McNie et al. 29. For each scratch orientation, a predetermined set of centrally-located surface/subsurface fiducial elements were interrogated for plastic strains occurring above specific thresholds. The total cross-sectional area (in the plane of the axes of loading and motion) was summed for those elements experiencing supra-threshold strains at any instant during the scratch encounter. The maximum instantaneous area of plastic strain above these specific thresholds was registered, as were the areas for principal plastic strain and maximum plastic shear strain. Again, plastic strain area results were segregated by maximum positive and negative values of strain, respectively, maximum absolute magnitudes of strain, and by residual plastic strain. These plastic strain areas were tabulated for 20 different plastic strain thresholds, spanning two orders of magnitude (0, 0.0005, 0.001–0.01 by increments of 0.001, and 0.01–0.09 by increments of 0.01). Additionally, the scratch angle dependence of the product of maximum instantaneous area of plastic strain times magnitude of plastic strain was investigated, for all four of the above-segregated areas and all 20 plastic strain thresholds. In total, 1,027 different stimulus variants were considered as possible surrogate metrics of wear, both for conventional and for highly crosslinked polyethylene (2,054 comparisons overall).

For both polyethylene variants, correspondence of the candidate metrics with the experimentally observed scratch direction-dependence of wear was evaluated both by objective measures of goodness-of-fit, and visually for specific qualitative criteria. All candidate metrics were formally ranked according to the average of three goodness-of-fit measures. The first of these measures was the cross-correlation coefficient r, defined 30 as follows:

r=inθ(Φ(i)mΦ)(V^(i)mV^)inθ(Φ(i)mΦ)2inθ(V^(i)mV^)2 (4)

Here, Φ and represent values of the surrogate metric and the experimental wear for a set of nθ scratch angles, with mΦ and mV denoting the respective means. The second goodness-of-fit measure was the area fraction  shared by two respective wear-vs-direction curves, after normalization to ensure equal areas. The third measure of fit was an R2 correlative statistic emerging from a random-fixed effects regression model. Briefly (details in Appendix A), analysis of variance (ANOVA) was performed both including and not including the computational dataset as a predictor of the experimental dataset. The improvement in variance achieved by adding the computational dataset as a predictor yielded an R2 statistic for that computational dataset. For visual assessments, plots of each φ parameter were reviewed manually throughout the individual scratch passage event, as were (normalized) plots of the corresponding Φ values versus angle-dependent experimental wear.

RESULTS

Experimentally, for conventional UHMWPE, a scratch oriented at 15º with respect to the sliding direction produced the greatest wear. The direction of greatest wear for crosslinked UHMWPE was 5º. In the finite element model, maximum stress values did not vary appreciably with scratch orientation. Rather, UHMWPE stresses achieved similarly supra-yield magnitudes for all scratch orientations. Peak normal stresses and principal stresses typically approached 60 MPa during scratch over-passage, while peak shear stresses were typically on the order of 10 MPa.

Two continuum wear surrogates were judged to most reasonably resemble the scratch lip direction-dependence observed experimentally. These two best-performing surrogates were (1) the cumulative compressive total normal strain in the direction of loading, and (2) the maximum instantaneous compressive total normal strain in the direction transverse to sliding (Figure 4). “Total strain” in this context denotes the sum of elastic plus plastic logarithmic strain.

Figure 4.

Figure 4

The two surrogate mechanical stimuli judged to best resemble the scratch lip direction-dependence of experimental wear. “Total strain” refers to the sum of elastic and plastic strain in the specified component direction.

A truncated list of candidate surrogates demonstrating the best quality of fit to scratch-direction-dependent experimental wear is presented in Table 1. Overall, the various surrogates computed in the finite element simulation did not show an ability to better fit the angle-dependence of one polyethylene material variant as opposed to the other. The entire quality-of-fit distribution is presented in Figure 5. Illustrative angle-dependencies of fits of candidate metrics are displayed in Figure 6, demonstrating the spectrum of predictive capability. The relative performance of these particular parameters (with respect to the complete set of available candidates) can be appreciated from Figure 5.

Table 1.

Best-performing 2.5% of the fits for the 2,054 mechanical stimulus candidates to experimentally observed UHMWPE wear (1,027 each for conventional and crosslinked UHMWPE). The tabulated quality of fit Q is the average of three measures: (1) 2-D correlation coefficient r, (2) fraction of shared area  in normalized plots of the two given datasets, and (3) correlative statistic R2 from a fixed/random effects ANOVA statistical model (See Appendix A). The complete rank list is provided in Appendix B (page 30). Please refer to the key following table for abbreviations.

Rank Q Stm TD Cmp Rgy Thrsh Mtl Rank Q Stm TD Cmp Rgy Thrsh Mtl
1 0.623 PS H 23 (+) V 36 0.525 APS I 22 Mx+ 0.002 X
2 0.614 APS I “E” 0.07 X 37 0.525 TS I 23 Mx+ V
3 0.597 TS I 22 Mx− V 38 0.519 APS I MnP |M| 0.005 X
4 0.589 TS H 22 (−) V 39 0.519 APS I MnP Mx− 0.005 X
5 0.578 APS I MnP |M| 0.009 X 40 0.518 TS I MxP |M| X
6 0.578 APS I MnP Mx− 0.009 X 41 0.518 TS I MxP Mx+ X
7 0.576 TS I 22 PV V 42 0.518 APS I “M” 0.006 X
8 0.575 APS I MxS 0.009 X 43 0.517 APS I MxP |M| 0.005 X
9 0.573 APS I MxP |M| 0.009 X 44 0.517 APS I MxP Mx+ 0.005 X
10 0.573 APS I MxP Mx+ 0.009 X 45 0.517 PSE I Gnl X
11 0.569 APS I MnP |M| 0.01 X 46 0.516 APS I MxP Mx− 0.0005 V
12 0.569 APS I MnP Mx− 0.01 X 47 0.516 APS I MnP Mx+ 0.0005 V
13 0.559 TS I 33 |M| X 48 0.516 APS I MnP Mx+ 0.005 V
14 0.559 TS I 33 Mx− X 49 0.516 M*A I MnP |M| 0 X
15 0.556 APS I “E” 0.05 X 50 0.516 M*A I MnP Mx− 0 X
16 0.553 APS I MxS 0.02 X 51 0.514 APS I MxS 0.005 X
17 0.549 APS I 11 Mx+ 0.0005 V 52 0.511 TS I 13 Mx− V
18 0.548 TS I MnP |M| X 53 0.510 TS H 13 (−) V
19 0.548 TS I MnP Mx− X 54 0.508 APS I 22 Mx− 0.006 V
20 0.546 M*A I “E” 0 X 55 0.506 APS I MxP Mx− 0.001 V
21 0.546 TS I 23 |M| X 56 0.505 APS I MxP Mx− 0.002 V
22 0.541 APS I MxP |M| 0.03 X 57 0.504 APS I “M” 0.02 X
23 0.541 APS I MxP Mx+ 0.03 X 58 0.504 APS I MnP Mx+ 0.002 V
24 0.539 TS H 23 (+) V 59 0.504 APS I MxS 0.03 X
25 0.537 TS I MxS X 60 0.503 M*A I MxS 0 X
26 0.535 APS I MxS 0.006 X 61 0.503 APS I “E” 0.007 X
27 0.531 PS I 23 Mx+ V 62 0.503 APS I MnP |M| 0.02 X
28 0.531 APS I “M” 0.007 X 63 0.503 APS I MnP Mx− 0.02 X
29 0.529 APS I MnP |M| 0.006 X 64 0.503 APS I “E” 0.006 X
30 0.529 APS I MnP Mx− 0.006 X 65 0.502 S H 22 (−) X
31 0.529 S I 22 Mx+ X 66 0.502 S I 23 |M| X
32 0.528 APS I 12 Mx− 0.002 V 67 0.502 S I 23 Mx+ X
33 0.528 APS I 22 Mx+ 0.001 V 68 0.502 APS I “M” 0.03 X
34 0.528 APS I MnP Mx+ 0.001 V 69 0.500 APS I “E” 0.03 X
35 0.526 APS I 12 Mx− 0.001 V 70 0.500 S H 3rd (−) X

NOTE: The following key provides abbreviations used for the above column headings and corresponding variants: Q = Quality of fit (= 1/3(r + Â + R2) ); Stm = Stimulus; APS = Area of Plastic Strain; MA = Magnitude of Area of plastic strain; PS = Plastic Strain; PSE = Plastic Strain Energy; TS = Total Strain; TSE = Total Strain Energy; TD = Temporal Designation; I = Instantaneous; H = (Cumulative) History; Cmp = Component; 11 = stimulus in the 1-plane, and in the 1-direction; 3rd = 3rd Invariant of stress (determinant of the stress tensor); “E” = “Equivalent” (ABAQUS effective value for consolidated tensorial components); Gnl = General state (normal state plus shear state); “M” = “Magnitude” (ABAQUS effective magnitude for consolidated tensorial components); MnP = Min Principal; MxP = Max Principal; Nml = Normal state; prs = equivalent pressure; Shr = Shear state; Tca = Tresca effective stress; vM = von Mises effective stress; Rgy = Registry; (+) = Positive values; (−) = Negative values; Mx+ = Max positive; Mx− = Max negative; |M| = Max (instantaneous) absolute magnitude; |m| = max (cumulative) absolute magnitude; PV = max cyclic Peak-to-Valley swing (suggestive of a fatigue measure for failure); Res = Residual (plastic strain); Thrsh = Threshold (of plastic strain, used in computing an area of plastic strain); Mtl = Material; V = conventional UHMWPE; X = highly crosslinked UHMWPE.

Figure 5.

Figure 5

Statistical fit distribution for all 2,054 comparisons of surrogate candidates to experimental wear. Selected cases (red dots) are illustrated in Figure 6, in order of decreasing quality of fit. Note: after the worst-fitting candidate listed above (#1310, quality of fit = 0.046), for administrative/procedural reasons, all remaining candidates involved incomplete datasets, and were assigned a quality of fit = 0.

Figure 6.

Figure 6

Figure 6

Selected plots of computational surrogate candidates representing a variety of mechanical stimuli and a range of statistical fit quality. These twelve plots correspond to the respective symbols on the distribution curve in Figure 5.

Once the complete list of candidate mechanical stimulus parameters was ranked according to quality-of-fit Q, the highest-ranking candidates (those with Q ≥ 0.5) were further screened visually, to ensure that they met four qualitative criteria. First, because desirable surrogate candidates needed to have a direction-dependent relationship that tended toward a single maximum, candidates presenting multiple discrete maxima of similar magnitude were eliminated from consideration. Similarly, candidates showing a relatively uniform distribution were excluded, as were those that had a global maximum at a scratch angle inconsistent with the experimental relationship. Fourth, since both positive-valued and negative-valued variants were evaluated for most potential surrogates, it seemed reasonable not to place credence in a given candidate (e.g., positive stress in the 2-direction) if its complement (negative stress in the 2-direction) was of far greater magnitude. Therefore, candidate surrogates involving normal stress were eliminated if their complement (reflecting physically distinct behavior in tension versus compression) was two or more orders of magnitude greater. Shear stress/strain components were eliminated if their complements were even nominally greater, since shear is physically similar for positive and negative values. Distribution choppiness (Fig 6a), per se, was not a basis for exclusion, provided that the Q value was high and that none of the above four exclusion criteria were applicable.

Two surrogates emerged as being overall most appropriate. These were (1) cumulative total (elastic + plastic) compressive normal strain in the direction of loading, and (2) maximum instantaneous total compressive normal strain transverse to the sliding direction. Secondary parametric influences (e.g., leading lip versus trailing lip passage, repeated lip passage residual strains) and variants of data normalization and interpolation are reported in detail elsewhere 26.

DISCUSSION

A reciprocal, unidirectional duty cycle was adopted experimentally in the interest of preserving consistent orientation between scratch direction and counterface motion, thereby allowing isolation of the specific effect - scratch directionality - under study. For wear of UHMWPE against polished counterfaces, it is well recognized that such a duty cycle fails to incorporate the crossing-path motions responsible for shearing off striations of polyethylene produced by asperity adhesion/abrasion, and thus tends to underestimate the wear occurring in the actual (in vivo) service environment 31,32. In the present experimental embodiment, however, besides achieving the desired effect of isolating the variable of primary interest (scratch directionality), there is a potent (indeed, arguably dominant) crossing-path effect, owing to scratch obliquity.

Computationally, the vast majority of the candidate mechanical parameters that were considered as potential wear surrogates turned out to correlate unremarkably (i.e., 1,984 of the 2,054 considered had Q < 0.5), or indeed even poorly (1,063 had Q < 0.3) with the experimentally observed scratch direction-dependence of polyethylene wear (Figure 6). The dominant shortcoming in that regard arose from failure to replicate the pronounced wear rate maximum consistently observed experimentally for scratches oriented at low angles (5–15°) relative to the sliding direction. The local FEA model did not incorporate a formal material failure criterion to directly model abrasive/adhesive wear, but many of the potential wear surrogates considered were parameters that are strongly associated with continuum-level material failure processes (e.g., first principal stress with tensile failure, von Mises stress with shear failure). Thus, one might reasonably infer that, had the local FEA model formally implemented a material failure mode, the scratch angle-dependence of such a failure process (e.g., tensile failure) would have been very highly correlated with the scratch angle-dependence of the failure-associated surrogate measure (i.e., first principal stress).

Given the observed insensitivity of the local stress and strain fields to scratch angle, one would not expect these simple metrics to be good predictors of angle-dependent wear rate. However, for metrics which implicitly incorporate a kinematic effect (e.g., stress or strain components transverse to the sliding direction), or those which explicitly incorporate a cumulative stimulus during scratch overpassage, the opportunities for correlation with physical wear mechanisms would seemingly be better. Although none of the individual surrogate mechanical parameters that were evaluated showed highly precise (Q > 0.9) or strong (Q > 0.7) replication of the experimentally observed relationship between scratch angle and wear rate, a small subset of them showed modest correlation (70 had Q > 0.5). Such surrogates therefore might plausibly be useful for phenomenological prediction of wear in FEA models of local asperities, and/or for making adjustments to global-level FEA wear predictions to possibly account for anisotropic roughening effects. Also, given these best-correlating parameters’ associations with specific physical failure mechanisms, one might also reasonably infer the failure mechanism(s) associated with polyethylene wear rate acceleration in the presence of 3rd body-induced scratch damage of a metal counterface. In that regard, a “slicing” paradigm suggests itself quite compellingly, rather than the sort of a “plowing” mechanism intuitively associated with scratches oriented nearly perpendicular to the direction of relative surface motion.

Obviously, the stress distributions computed in the present local finite element model were predicated on the numbers, spacing, and lip height of scratches being such that the global contact load was supported entirely by “line contact” with scratch lips, rather than being supported substantially by unscratched surface regions. While this local FEA model was a realistic replication of the corresponding physical testing set-up, the latter had been deliberately designed to generate very large amounts of debris in short periods of time, in order to accentuate possible directional differences. The particular scratch profile utilized experimentally and computationally was representative of typical in vivo 3rd body damage, but the numbers/spacing of such scratches in the model corresponded to a situation far more abusive than would conceivably be tolerable in vivo. (As a point of reference, the absolute wear factor for the present 15° scratch angle experiments for conventional polyethylene averaged 5x10−6 mm3/N-m, whereas typical wear factors for borderline-wear-problematic THA implants are on the order of 1.2–1.9x10−6 mm3/N-m 39,108.) Nevertheless, even though the great majority of load in clinical THA constructs is presumably supported by polished/ undamaged surface regions rather than by scratch lips, the present data arguably isolate the direction-dependence of wear rate acceleration due to whatever population of scratches happens to be physically present.

The maximum instantaneous area of plastic strain during scratch engagement was found to correlate fairly well with the experimental scratch-direction-dependence of wear, supporting the results of McNie et al.’s 2-D FEA work on scratch asperity damage to UHMWPE 15,29. The results of the present study are also consistent with that group’s observation that the area (or volume, in the case of the present 3-D formulation) of polyethylene undergoing plastic strain may more reliably relate to wear volume than does the magnitude of maximum plastic strain per se.

High surface and subsurface plastic strains have been associated with the initiation of both surface ripples 33 and with fatigue micro-cracks on or below the surface 29. The migration of such micro-cracks to the surface is believed to promote formation of polyethylene debris, potentially encouraging liberation of fibers or ridges tens of microns in length 34. In the present study, such large fibers were ubiquitous in particle populations harvested from the lubricant (Figure 7) when a scratched counterface was involved. As a negative control, an otherwise similar non-roughened metal plate (Ra< 100 nm) reciprocating against polyethylene produced particles of submicron or micron size (Figure 7), resembling the predominant volumetric fraction of particles observed to surround total joints in vivo.

Figure 7.

Figure 7

UHMWPE debris particles collected from the experimental apparatus following articulation. (a) Particles generated by a scratched surface were typically orders larger than the most biologically reactive submicron debris. Here, a particle of crosslinked UHMWPE is presented, produced by a scratch orientation of 5°. (b) A smooth articulation couple produced debris that were of submicron- or micron-order size, similar to the overwhelming volumetric fraction of particles found in tissues surrounding an implanted total joint in vivo. Further details regarding the relationships between local stress fields and sliding parameters are reported elsewhere26.

In summary, a finite element model was used to investigate the sliding articulation of polyethylene with parametrically-oriented scratch lips, surveying field variable histories in an attempt to identify continuum parameters empirically associated with corresponding experimentally-determined wear dependence. All candidate parameters were graphically reviewed manually, and were formally ranked statistically. The best correlating of these surrogates - two variants of compressive total strain - potentially provide a basis by which to account for anisotropic scratch damage in global FEA models of accelerated wear due to articulation against roughened femoral heads.

Appendix B.

Complete listing of all ranked candidate surrogates for scratch angle-dependent wear. Please refer to Table 1 key for abbreviations.

Rank Stm TD Cmp Rgy Thrsh Mtl Q Rank Stm TD Cmp Rgy Thrsh Mtl Q
1 PS H 23 (+) V 0.623 36 APS I 22 Mx+ 0.002 X 0.525
2 APS I “E” 0.07 X 0.614 37 TS I 23 Mx+ V 0.525
3 TS I 22 Mx− V 0.597 38 APS I MnP |M| 0.005 X 0.519
4 TS H 22 (−) V 0.589 39 APS I MnP Mx− 0.005 X 0.519
5 APS I MnP |M| 0.009 X 0.578 40 TS I MxP |M| X 0.518
6 APS I MnP Mx− 0.009 X 0.578 41 TS I MxP Mx+ X 0.518
7 TS I 22 PV V 0.576 42 APS I “M” 0.006 X 0.518
8 APS I MxS 0.009 X 0.575 43 APS I MxP |M| 0.005 X 0.517
9 APS I MxP |M| 0.009 X 0.573 44 APS I MxP Mx+ 0.005 X 0.517
10 APS I MxP Mx+ 0.009 X 0.573 45 PSE I Gnl X 0.517
11 APS I MnP |M| 0.01 X 0.569 46 APS I MxP Mx− 0.0005 V 0.516
12 APS I MnP Mx− 0.01 X 0.569 47 APS I MnP Mx+ 0.0005 V 0.516
13 TS I 33 |M| X 0.559 48 APS I MnP Mx+ 0.005 V 0.516
14 TS I 33 Mx− X 0.559 49 M*A I MnP |M| 0 X 0.516
15 APS I “E” 0.05 X 0.556 50 M*A I MnP Mx− 0 X 0.516
16 APS I MxS 0.02 X 0.553 51 APS I MxS 0.005 X 0.514
17 APS I 11 Mx+ 0.0005 V 0.549 52 TS I 13 Mx− V 0.511
18 TS I MnP |M| X 0.548 53 TS H 13 (−) V 0.510
19 TS I MnP Mx− X 0.548 54 APS I 22 Mx− 0.006 V 0.508
20 M*A I “E” 0 X 0.546 55 APS I MxP Mx− 0.001 V 0.506
21 TS I 23 |M| X 0.546 56 APS I MxP Mx− 0.002 V 0.505
22 APS I MxP |M| 0.03 X 0.541 57 APS I “M” 0.02 X 0.504
23 APS I MxP Mx+ 0.03 X 0.541 58 APS I MnP Mx+ 0.002 V 0.504
24 TS H 23 (+) V 0.539 59 APS I MxS 0.03 X 0.504
25 TS I MxS X 0.537 60 M*A I MxS 0 X 0.503
26 APS I MxS 0.006 X 0.535 61 APS I “E” 0.007 X 0.503
27 PS I 23 Mx+ V 0.531 62 APS I MnP |M| 0.02 X 0.503
28 APS I “M” 0.007 X 0.531 63 APS I MnP Mx− 0.02 X 0.503
29 APS I MnP |M| 0.006 X 0.529 64 APS I “E” 0.006 X 0.503
30 APS I MnP Mx− 0.006 X 0.529 65 S H 22 (−) X 0.502
31 S I 22 Mx+ X 0.529 66 S I 23 |M| X 0.502
32 APS I 12 Mx− 0.002 V 0.528 67 S I 23 Mx+ X 0.502
33 APS I 22 Mx+ 0.001 V 0.528 68 APS I “M” 0.03 X 0.502
34 APS I MnP Mx+ 0.001 V 0.528 69 APS I “E” 0.03 X 0.500
35 APS I 12 Mx− 0.001 V 0.526 70 S H 3rd (−) X 0.500
71 M*A I “M” 0 X 0.499 121 S I prs PV X 0.491
72 S I 3rd |M| X 0.499 122 S I 11 PV X 0.490
73 S I 3rd Mx− X 0.499 123 S I 33 |M| X 0.490
74 APS I 12 Mx− 0.0005 X 0.499 124 S I 33 Mx− X 0.490
75 S H 33 (+) V 0.498 125 TSE I Shr X 0.489
76 APS I “E” 0.04 X 0.498 126 APS I 11 Res 0.0005 V 0.489
77 TS I 33 PV X 0.498 127 S I MxP PV X 0.489
78 APS I MnP |M| 0.03 X 0.497 128 S I MxP |M| X 0.488
79 APS I MnP Mx− 0.03 X 0.497 129 S I MxP Mx− X 0.488
80 APS I “E” 0.06 X 0.497 130 M*A I 22 Mx− 0 V 0.486
81 PSE I Shr PV X 0.497 131 S H prs (+) X 0.486
82 TS I MxS PV X 0.497 132 S I 22 PV X 0.486
83 APS I 12 |M| 0.0005 X 0.497 133 APS I MxP Mx− 0.003 V 0.485
84 APS I 12 Mx+ 0.0005 X 0.497 134 APS I MnP Mx+ 0.003 V 0.485
85 TSE I Shr PV X 0.497 135 APS I 22 Mx− 0.01 V 0.483
86 TS I 23 PV X 0.497 136 TS I 22 |M| X 0.483
87 TS I MnP PV X 0.497 137 PS I MnP PV X 0.482
88 S I Tca PV X 0.497 138 APS I “M” 0.04 X 0.482
89 S I vM PV X 0.497 139 APS I 11 |M| 0.0005 V 0.482
90 S I 3rd PV X 0.497 140 S I MxS X 0.482
91 S I MxS PV X 0.497 141 S I Tca X 0.482
92 S I 23 PV X 0.497 142 S I vM X 0.482
93 TSE I Nml X 0.497 143 TS I 22 Mx+ X 0.482
94 APS I 22 |M| 0.004 V 0.497 144 S H prs (−) X 0.482
95 TSE I Gnl X 0.497 145 TS I 22 Mx− X 0.481
96 PSE I Gnl PV X 0.497 146 APS I MxP Mx− 0.004 V 0.480
97 TS H 33 (−) V 0.497 147 S H 3rd (+) V 0.480
98 S I MnP |M| X 0.497 148 APS I 12 |M| 0.002 V 0.480
99 S I MnP Mx− X 0.497 149 APS I 12 Mx+ 0.002 V 0.480
100 APS I 12 Mx− 0.0005 V 0.497 150 APS I MnP Mx+ 0.004 V 0.480
101 APS I 22 Mx− 0.004 V 0.496 151 PS I “M” PV X 0.479
102 S I MnP PV X 0.496 152 TS I 23 Mx+ X 0.479
103 S I 3rd Mx+ X 0.496 153 APS I MxP Mx− 0.005 V 0.478
104 S I 22 |M| X 0.495 154 S H 33 (−) X 0.478
105 S I 22 Mx− X 0.495 155 APS I 12 |M| 0.001 X 0.478
106 S I 33 Mx+ X 0.495 156 APS I 12 Mx+ 0.001 X 0.478
107 TSE I Nml PV X 0.495 157 PSE I Nml X 0.477
108 TS I MxP PV X 0.494 158 APS I MxP |M| 0.004 X 0.477
109 TSE I Gnl PV X 0.494 159 APS I “M” 0.005 X 0.477
110 S I 33 PV X 0.494 160 APS I MxS 0.004 X 0.477
111 TS I 22 PV X 0.494 161 APS I MxP Mx+ 0.004 X 0.477
112 APS I 22 Mx− 0.009 V 0.493 162 APS I MxP |M| 0.006 X 0.476
113 S I 11 |M| X 0.493 163 APS I MxP Mx+ 0.006 X 0.476
114 S I 11 Mx− X 0.493 164 PS I MxS PV X 0.476
115 S H 23 (−) V 0.493 165 APS I 22 Mx+ 0.0005 V 0.476
116 S H 3rd (+) X 0.492 166 S H 12 X 0.476
117 S I prs |M| X 0.492 167 S I MxP Mx+ V 0.475
118 S I prs Mx+ X 0.492 168 TS I 23 PV V 0.475
119 M*A I MxP |M| 0 X 0.492 169 PSE I Nml PV X 0.475
120 M*A I MxP Mx+ 0 X 0.492 170 TS I 33 |M| V 0.475
171 TS I 33 Mx− V 0.475 221 APS I “E” 0.03 V 0.454
172 S H 11 (−) X 0.475 222 APS I MxP |M| 0.02 X 0.454
173 TS I 23 Mx− X 0.474 223 APS I MxP Mx+ 0.02 X 0.454
174 PS I MxP PV X 0.473 224 APS I 22 |M| 0.01 V 0.454
175 TS I 33 PV V 0.473 225 PS I 33 |M| X 0.453
176 APS I “E” 0.008 X 0.472 226 APS I “E” 0.04 V 0.452
177 S I 23 |M| V 0.471 227 TS I 23 |M| V 0.452
178 S I 23 Mx+ V 0.471 228 TS I 23 Mx− V 0.452
179 S I prs Mx− V 0.471 229 APS I MnP |M| 0.03 V 0.452
180 S I 33 Mx+ V 0.471 230 APS I 12 |M| 0.0005 V 0.452
181 TS H 12 (+) X 0.471 231 APS I MnP Mx− 0.03 V 0.452
182 S I 3rd |M| V 0.470 232 APS I “E” 0.06 V 0.452
183 S I 3rd Mx− V 0.470 233 APS I 12 Mx+ 0.0005 V 0.452
184 APS I 12 |M| 0.003 V 0.469 234 S I 13 Mx− V 0.452
185 APS I 12 Mx+ 0.003 V 0.469 235 S I 23 Mx− X 0.452
186 APS I 12 |M| 0.001 V 0.467 236 S I 33 PV V 0.451
187 APS I 12 Mx+ 0.001 V 0.467 237 S I 23 Mx− V 0.451
188 PS I 12 PV X 0.466 238 S I 12 PV X 0.450
189 S H 23 (+) V 0.465 239 APS I 23 |M| 0.008 V 0.450
190 APS I 22 |M| 0.009 V 0.465 240 APS I 23 Mx− 0.008 V 0.450
191 S I MxP Mx+ X 0.465 241 APS I MxS 0.03 V 0.449
192 APS I MnP Mx+ 0.006 V 0.464 242 APS I 23 |M| 0.01 V 0.448
193 APS I 22 |M| 0.006 V 0.464 243 APS I 23 Mx− 0.01 V 0.448
194 S I 3rd PV V 0.463 244 APS I 23 |M| 0.007 V 0.448
195 APS I 12 Mx− 0.001 X 0.463 245 APS I 23 Mx− 0.007 V 0.448
196 APS I MxS 0.01 X 0.463 246 APS I 22 Mx− 0.008 V 0.448
197 S I 23 PV V 0.462 247 APS I 33 Mx− 0.001 V 0.448
198 PS I “E” PV X 0.461 248 APS I 33 |M| 0.002 V 0.447
199 APS I MxP |M| 0.01 X 0.461 249 APS I 33 Mx+ 0.002 V 0.447
200 APS I MxP Mx+ 0.01 X 0.461 250 APS I 33 |M| 0.003 V 0.447
201 APS I 22 Mx− 0.005 V 0.460 251 APS I 33 Mx+ 0.003 V 0.447
202 APS I 33 Mx− 0.0005 V 0.460 252 S I Tca PV V 0.445
203 S H 12 (+) X 0.460 253 S I MxS PV V 0.445
204 M*A I 23 |M| 0 V 0.460 254 TS I 12 PV X 0.445
205 M*A I 23 Mx− 0 V 0.460 255 APS I MxP |M| 0.006 V 0.445
206 PS H 22 (+) X 0.458 256 APS I MxP Mx+ 0.006 V 0.445
207 TS H 33 V 0.457 257 S I vM PV V 0.445
208 APS I “E” 0.007 V 0.457 258 PS I 11 PV X 0.445
209 APS I MnP |M| 0.02 V 0.457 259 S H 13 (−) V 0.445
210 APS I MnP Mx− 0.02 V 0.457 260 APS I 23 |M| 0.009 V 0.445
211 APS I “E” 0.006 V 0.457 261 APS I 23 Mx− 0.009 V 0.445
212 APS I 33 Mx+ 0.001 V 0.456 262 TS I 33 Mx+ V 0.445
213 APS I “M” 0.03 V 0.456 263 TSE H Shr V 0.444
214 S H 33 (+) X 0.455 264 TSE I Gnl V 0.444
215 S I 3rd Mx+ V 0.455 265 PS I 13 |M| V 0.444
216 APS I MxP Mx− 0.006 V 0.455 266 PS I 13 Mx+ V 0.444
217 APS I 33 |M| 0.001 V 0.455 267 PS I MxP |M| X 0.444
218 TS I 33 Mx+ X 0.454 268 PS I MxP Mx+ X 0.444
219 S H 33 (−) V 0.454 269 APS I 22 |M| 0.02 X 0.442
220 S H 12 V 0.454 270 APS I MxS 0.005 V 0.442
271 APS I 23 Mx+ 0.0005 V 0.440 321 S H 22 (−) V 0.427
272 M*A I 22 |M| 0 V 0.439 322 PS I MnP |M| V 0.427
273 APS I 23 Mx+ 0.002 V 0.439 323 PS I MnP Mx− V 0.427
274 APS I 23 Mx+ 0.001 V 0.438 324 S I prs |M| V 0.426
275 PS I 22 PV X 0.438 325 S I prs Mx+ V 0.426
276 APS I “M” 0.008 V 0.437 326 APS I 13 |M| 0.0005 V 0.426
277 S H 22 (+) X 0.437 327 APS I 22 |M| 0.003 X 0.426
278 S I 11 Mx+ V 0.437 328 M*A I 33 Mx+ 0 V 0.426
279 APS I 13 Mx− 0.001 V 0.436 329 APS I 33 |M| 0.0005 V 0.426
280 APS I 13 |M| 0.001 V 0.436 330 TS I 13 Mx− X 0.426
281 TSE I Nml V 0.436 331 APS I 33 Mx+ 0.0005 V 0.425
282 PS I 33 PV V 0.436 332 APS I “E” 0.02 X 0.425
283 APS I “E” 0.008 V 0.436 333 APS I 22 |M| 0.005 X 0.425
284 APS I 23 |M| 0.03 V 0.436 334 TSE I Shr PV V 0.424
285 APS I 23 Mx− 0.03 V 0.436 335 S I 13 PV V 0.424
286 PS I 33 |M| V 0.436 336 APS I 33 Mx+ 0.005 V 0.423
287 PS I 22 Mx+ X 0.436 337 S I prs Mx− X 0.423
288 TSE I Gnl PV V 0.435 338 S H prs (+) V 0.423
289 APS I MnP |M| 0.007 V 0.435 339 S I 12 Mx+ X 0.423
290 APS I MnP Mx− 0.007 V 0.435 340 M*A I 33 |M| 0 V 0.422
291 APS I MxP |M| 0.005 V 0.435 341 TS H 33 (+) V 0.422
292 APS I MxP Mx+ 0.005 V 0.435 342 APS I MxP Mx− 0.0005 X 0.422
293 S I MxP PV V 0.434 343 APS I MnP Mx+ 0.0005 X 0.422
294 S I vM V 0.434 344 TS I 12 |M| X 0.422
295 S I MxS V 0.434 345 TS I 12 Mx+ X 0.422
296 S I Tca V 0.434 346 APS I 22 Mx+ 0.006 X 0.422
297 S I prs PV V 0.433 347 APS I 23 Mx+ 0.004 V 0.422
298 APS I MxS 0.007 V 0.433 348 S I MxP |M| V 0.421
299 APS I 13 Mx− 0.0005 V 0.433 349 S I MxP Mx− V 0.421
300 S I MnP |M| V 0.433 350 APS I 23 |M| 0.05 V 0.421
301 S I MnP Mx− V 0.433 351 APS I 23 Mx− 0.05 V 0.421
302 TS H 23 (−) V 0.432 352 PSE I Shr PV V 0.421
303 PS I MxS X 0.432 353 PS I 33 Mx− X 0.421
304 APS I “M” 0.006 V 0.432 354 S I 11 PV V 0.420
305 S I MnP PV V 0.432 355 APS I 12 Mx− 0.003 V 0.419
306 S I 22 Mx+ V 0.430 356 TS I 13 PV X 0.419
307 APS I 23 Mx+ 0.008 V 0.430 357 APS I 22 Mx− 0.003 V 0.418
308 TSE I Nml PV V 0.430 358 PS I 12 |M| V 0.418
309 APS I 13 Mx+ 0.001 X 0.429 359 PS I 12 Mx+ V 0.418
310 S I 22 PV V 0.429 360 APS I MnP |M| 0.006 V 0.418
311 S I 22 |M| V 0.429 361 APS I MnP Mx− 0.006 V 0.418
312 S I 22 Mx− V 0.429 362 PS I “M” X 0.418
313 S I 33 |M| V 0.429 363 PS I MnP PV V 0.416
314 S I 33 Mx− V 0.429 364 TS I 11 PV X 0.416
315 PS I 13 PV V 0.429 365 PS H 22 X 0.416
316 TS H 22 (+) X 0.428 366 APS I “M” 0.007 V 0.415
317 PS I 33 Mx− V 0.428 367 APS I 22 |M| 0.005 V 0.415
318 APS I “E” 0.05 V 0.428 368 TS I 13 PV V 0.415
319 TS H 12 X 0.428 369 APS I 33 |M| 0.005 V 0.415
320 APS I 13 Mx+ 0.0005 V 0.428 370 APS I “E” 0.009 V 0.414
371 TS H 23 |m| X 0.413 421 APS I 13 Res 0 X 0.404
372 APS I 23 Mx+ 0.006 V 0.413 422 APS I 12 Res 0 X 0.404
373 S I 13 PV X 0.413 423 APS I MnP Res 0 X 0.404
374 APS I 23 |M| 0.006 V 0.412 424 APS I MxP Res 0 X 0.404
375 APS I 23 Mx− 0.006 V 0.412 425 APS I 33 Res 0 X 0.404
376 APS I 22 Mx− 0.003 X 0.412 426 APS I 22 Res 0 X 0.404
377 APS I 23 Mx+ 0.003 V 0.412 427 APS I 11 Res 0 X 0.404
378 APS I MnP Mx+ 0.001 X 0.412 428 APS I MnP |M| 0.004 X 0.404
379 APS I 23 Mx+ 0.007 V 0.412 429 APS I MnP |M| 0.003 X 0.404
380 APS I 22 |M| 0.008 X 0.411 430 APS I MxP |M| 0.003 X 0.404
381 M*A I 23 Mx+ 0 V 0.411 431 APS I MnP |M| 0.002 X 0.404
382 S I 11 |M| V 0.410 432 APS I MxP |M| 0.002 X 0.404
383 S I 11 Mx− V 0.410 433 APS I 22 |M| 0.002 X 0.404
384 APS I “M” 0.01 X 0.410 434 APS I MnP |M| 0.001 X 0.404
385 PS I 33 PV X 0.410 435 APS I MxP |M| 0.001 X 0.404
386 TS H 13 |m| X 0.409 436 APS I 22 |M| 0.001 X 0.404
387 PS I MxS V 0.409 437 APS I MnP |M| 0.0005 X 0.404
388 PS I “M” V 0.409 438 APS I MxP |M| 0.0005 X 0.404
389 PS I 23 |M| V 0.408 439 APS I 22 |M| 0.0005 X 0.404
390 PS I 23 Mx− V 0.408 440 APS I 23 |M| 0 X 0.404
391 PS H 33 (−) X 0.408 441 APS I 13 |M| 0 X 0.404
392 APS I 22 |M| 0.003 V 0.407 442 APS I 12 |M| 0 X 0.404
393 APS I MxS 0.006 V 0.407 443 APS I MnP |M| 0 X 0.404
394 PS I “E” V 0.407 444 APS I MxP |M| 0 X 0.404
395 APS I 23 |M| 0.005 V 0.407 445 APS I 33 |M| 0 X 0.404
396 APS I 23 Mx− 0.005 V 0.407 446 APS I 22 |M| 0 X 0.404
397 PS I “E” PV V 0.406 447 APS I 11 |M| 0 X 0.404
398 PS I 23 PV X 0.406 448 APS I MnP Mx− 0.004 X 0.404
399 APS I MxS 0.007 X 0.406 449 APS I MnP Mx− 0.003 X 0.404
400 APS I MnP |M| 0.007 X 0.406 450 APS I MnP Mx− 0.002 X 0.404
401 APS I MnP Mx− 0.007 X 0.406 451 APS I MnP Mx− 0.001 X 0.404
402 APS I 11 Mx+ 0.001 X 0.405 452 APS I MnP Mx− 0.0005 X 0.404
403 APS I 23 |M| 0.003 X 0.405 453 APS I 23 Mx− 0 X 0.404
404 APS I 23 Mx− 0.003 X 0.405 454 APS I 13 Mx− 0 X 0.404
405 APS I 23 |M| 0.002 X 0.405 455 APS I 12 Mx− 0 X 0.404
406 APS I 23 Mx− 0.002 X 0.405 456 APS I MnP Mx− 0 X 0.404
407 APS I “M” 0.008 X 0.405 457 APS I MxP Mx− 0 X 0.404
408 APS I 23 Mx+ 0.009 V 0.405 458 APS I 33 Mx− 0 X 0.404
409 APS I 23 Mx− 0.001 X 0.405 459 APS I 22 Mx− 0 X 0.404
410 APS I MxP Mx− 0.001 X 0.405 460 APS I 11 Mx− 0 X 0.404
411 APS I 23 |M| 0.02 V 0.405 461 APS I “E” 0.005 X 0.404
412 APS I 23 Mx− 0.02 V 0.405 462 APS I “M” 0.004 X 0.404
413 APS I 23 Mx+ 0.005 V 0.404 463 APS I “E” 0.004 X 0.404
414 APS I 23 |M| 0.0005 X 0.404 464 APS I “M” 0.003 X 0.404
415 APS I 23 Mx− 0.0005 X 0.404 465 APS I “E” 0.003 X 0.404
416 APS I 11 |M| 0.001 X 0.404 466 APS I MxS 0.003 X 0.404
417 APS I “M” Res 0 X 0.404 467 APS I MxP Mx+ 0.003 X 0.404
418 APS I “E” Res 0 X 0.404 468 APS I “M” 0.002 X 0.404
419 APS I MxS Res 0 X 0.404 469 APS I “E” 0.002 X 0.404
420 APS I 23 Res 0 X 0.404 470 APS I MxS 0.002 X 0.404
471 APS I MxP Mx+ 0.002 X 0.404 521 APS I 11 |M| 0 V 0.404
472 APS I “M” 0.001 X 0.404 522 APS I MnP Mx− 0.004 V 0.404
473 APS I “E” 0.001 X 0.404 523 APS I MnP Mx− 0.003 V 0.404
474 APS I MxS 0.001 X 0.404 524 APS I MnP Mx− 0.002 V 0.404
475 APS I MxP Mx+ 0.001 X 0.404 525 APS I MnP Mx− 0.001 V 0.404
476 APS I “M” 0.0005 X 0.404 526 APS I MnP Mx− 0.0005 V 0.404
477 APS I “E” 0.0005 X 0.404 527 APS I 23 Mx− 0 V 0.404
478 APS I MxS 0.0005 X 0.404 528 APS I 13 Mx− 0 V 0.404
479 APS I MxP Mx+ 0.0005 X 0.404 529 APS I 12 Mx− 0 V 0.404
480 APS I “M” 0 X 0.404 530 APS I MnP Mx− 0 V 0.404
481 APS I “E” 0 X 0.404 531 APS I MxP Mx− 0 V 0.404
482 APS I MxS 0 X 0.404 532 APS I 33 Mx− 0 V 0.404
483 APS I 23 Mx+ 0 X 0.404 533 APS I 22 Mx− 0 V 0.404
484 APS I 13 Mx+ 0 X 0.404 534 APS I 11 Mx− 0 V 0.404
485 APS I 12 Mx+ 0 X 0.404 535 APS I “E” 0.005 V 0.404
486 APS I MnP Mx+ 0 X 0.404 536 APS I “M” 0.004 V 0.404
487 APS I MxP Mx+ 0 X 0.404 537 APS I “E” 0.004 V 0.404
488 APS I 33 Mx+ 0 X 0.404 538 APS I “M” 0.003 V 0.404
489 APS I 22 Mx+ 0 X 0.404 539 APS I “E” 0.003 V 0.404
490 APS I 11 Mx+ 0 X 0.404 540 APS I MxS 0.003 V 0.404
491 APS I “M” Res 0 V 0.404 541 APS I MxP Mx+ 0.003 V 0.404
492 APS I “E” Res 0 V 0.404 542 APS I “M” 0.002 V 0.404
493 APS I MxS Res 0 V 0.404 543 APS I “E” 0.002 V 0.404
494 APS I 23 Res 0 V 0.404 544 APS I MxS 0.002 V 0.404
495 APS I 13 Res 0 V 0.404 545 APS I MxP Mx+ 0.002 V 0.404
496 APS I 12 Res 0 V 0.404 546 APS I “M” 0.001 V 0.404
497 APS I MnP Res 0 V 0.404 547 APS I “E” 0.001 V 0.404
498 APS I MxP Res 0 V 0.404 548 APS I MxS 0.001 V 0.404
499 APS I 33 Res 0 V 0.404 549 APS I MxP Mx+ 0.001 V 0.404
500 APS I 22 Res 0 V 0.404 550 APS I “M” 0.0005 V 0.404
501 APS I 11 Res 0 V 0.404 551 APS I “E” 0.0005 V 0.404
502 APS I MnP |M| 0.004 V 0.404 552 APS I MxS 0.0005 V 0.404
503 APS I MnP |M| 0.003 V 0.404 553 APS I MxP Mx+ 0.0005 V 0.404
504 APS I MxP |M| 0.003 V 0.404 554 APS I “M” 0 V 0.404
505 APS I MnP |M| 0.002 V 0.404 555 APS I “E” 0 V 0.404
506 APS I MxP |M| 0.002 V 0.404 556 APS I MxS 0 V 0.404
507 APS I 22 |M| 0.002 V 0.404 557 APS I 23 Mx+ 0 V 0.404
508 APS I MnP |M| 0.001 V 0.404 558 APS I 13 Mx+ 0 V 0.404
509 APS I MxP |M| 0.001 V 0.404 559 APS I 12 Mx+ 0 V 0.404
510 APS I 22 |M| 0.001 V 0.404 560 APS I MnP Mx+ 0 V 0.404
511 APS I MnP |M| 0.0005 V 0.404 561 APS I MxP Mx+ 0 V 0.404
512 APS I MxP |M| 0.0005 V 0.404 562 APS I 33 Mx+ 0 V 0.404
513 APS I 22 |M| 0.0005 V 0.404 563 APS I 22 Mx+ 0 V 0.404
514 APS I 23 |M| 0 V 0.404 564 APS I 11 Mx+ 0 V 0.404
515 APS I 13 |M| 0 V 0.404 565 APS I 23 |M| 0.001 X 0.404
516 APS I 12 |M| 0 V 0.404 566 APS I 11 Res 0.001 X 0.403
517 APS I MnP |M| 0 V 0.404 567 APS I 23 |M| 0.004 V 0.403
518 APS I MxP |M| 0 V 0.404 568 APS I 23 Mx− 0.004 V 0.403
519 APS I 33 |M| 0 V 0.404 569 APS I 22 Mx+ 0.008 X 0.403
520 APS I 22 |M| 0 V 0.404 570 PS I “M” PV V 0.403
571 PS I MxS PV V 0.402 621 APS I 11 Res 0.003 X 0.389
572 APS I 33 |M| 0.004 V 0.402 622 S H 13 (+) V 0.389
573 PS I 23 PV V 0.401 623 APS I 22 Mx− 0.005 X 0.389
574 APS I 13 Mx+ 0.002 V 0.401 624 APS I MxP |M| 0.007 V 0.389
575 APS I 23 |M| 0.07 X 0.400 625 APS I MxP Mx+ 0.007 V 0.389
576 APS I 23 Mx− 0.07 X 0.400 626 TSE I Shr V 0.389
577 APS I 33 Mx+ 0.004 V 0.400 627 APS I 33 |M| 0.008 V 0.389
578 S H 33 V 0.400 628 M*A I 22 Mx+ 0 X 0.388
579 S I 13 |M| V 0.400 629 APS I 33 Mx− 0.002 V 0.387
580 S H 11 (+) X 0.400 630 APS I 13 Mx+ 0.003 X 0.387
581 PS I MnP |M| X 0.398 631 APS I 22 |M| 0.007 X 0.387
582 PS I MnP Mx− X 0.398 632 S H 22 V 0.387
583 PS H 12 (+) X 0.397 633 S H MnP V 0.387
584 APS I 33 Mx+ 0.008 V 0.396 634 PS I MxP PV V 0.387
585 APS I 23 |M| 0.004 X 0.396 635 APS I 33 |M| 0.0005 X 0.386
586 APS I 23 Mx− 0.004 X 0.396 636 APS I 33 Mx+ 0.0005 X 0.386
587 APS I 22 Mx+ 0.009 X 0.395 637 S H 11 V 0.386
588 PS H 23 (−) X 0.395 638 APS I 11 |M| 0.003 X 0.386
589 APS I 22 |M| 0.006 X 0.395 639 TS H 33 (−) X 0.386
590 APS I 23 |M| 0.005 X 0.394 640 APS I 11 Res 0.002 X 0.385
591 APS I 23 Mx− 0.005 X 0.394 641 APS I 11 Mx+ 0.002 X 0.385
592 APS I 22 Mx+ 0.007 X 0.394 642 PS I 12 PV V 0.385
593 APS I MxP |M| 0.004 V 0.394 643 APS I 23 |M| 0.001 V 0.385
594 APS I “M” 0.005 V 0.394 644 PS I 22 |M| X 0.385
595 APS I MxS 0.004 V 0.394 645 APS I 23 |M| 0.0005 V 0.384
596 APS I MxP Mx+ 0.004 V 0.394 646 APS I 23 Mx− 0.0005 V 0.384
597 APS I 23 |M| 0.006 X 0.393 647 PSE I Shr X 0.384
598 APS I 23 Mx− 0.006 X 0.393 648 S H vM V 0.384
599 APS I 33 |M| 0.009 V 0.392 649 APS I 23 Mx− 0.001 V 0.384
600 APS I 23 Mx+ 0.0005 X 0.392 650 TS H MnP V 0.384
601 APS I “M” 0.04 V 0.392 651 APS I MxP Mx− 0.007 V 0.383
602 M*A I 22 |M| 0 X 0.392 652 APS I 23 |M| 0.002 V 0.383
603 APS I 22 Mx− 0.007 V 0.391 653 APS I 23 Mx− 0.002 V 0.383
604 PS I MxP |M| V 0.391 654 S H MxS V 0.383
605 PS I MxP Mx+ V 0.391 655 S H Tca V 0.383
606 TS H 22 (−) X 0.391 656 APS I 11 |M| 0.002 X 0.382
607 S H prs V 0.391 657 APS I 33 Mx+ 0.006 V 0.381
608 S H 11 (−) V 0.391 658 APS I 23 |M| 0.003 V 0.381
609 APS I MnP |M| 0.008 X 0.391 659 APS I 23 Mx− 0.003 V 0.381
610 APS I MnP Mx− 0.008 X 0.391 660 M*A I MxP Mx− 0 V 0.381
611 APS I MxS 0.008 X 0.391 661 APS I 13 Mx+ 0.004 X 0.381
612 APS I 11 Mx+ 0.003 X 0.390 662 APS I 22 |M| 0.008 V 0.381
613 APS I 33 Mx+ 0.007 V 0.390 663 APS I 13 |M| 0.0005 X 0.380
614 APS I MxP |M| 0.008 X 0.390 664 M*A I “E” 0 V 0.380
615 APS I MxP Mx+ 0.008 X 0.390 665 TS H MxS V 0.380
616 TSE H Gnl V 0.390 666 S H 3rd (−) V 0.380
617 APS I 22 Mx+ 0.003 X 0.390 667 S I 12 |M| V 0.380
618 PS H 33 (−) V 0.390 668 APS I 22 Mx+ 0.001 X 0.379
619 S H MxP V 0.390 669 APS I MnP Mx+ 0.007 V 0.379
620 APS I 33 Mx+ 0.009 V 0.389 670 S I 13 Mx+ V 0.378
671 APS I 12 |M| 0.005 X 0.378 721 APS I 23 |M| 0.008 X 0.363
672 APS I 12 Mx+ 0.005 X 0.378 722 APS I 23 Mx− 0.008 X 0.363
673 TSE H Nml V 0.378 723 APS I 22 Mx− 0.006 X 0.363
674 APS I 13 |M| 0.002 V 0.378 724 APS I 22 Mx+ 0.01 X 0.362
675 APS I 33 |M| 0.007 V 0.377 725 APS I 11 |M| 0.004 X 0.361
676 S I 12 Mx− V 0.377 726 APS I 33 Mx+ 0.01 V 0.361
677 APS I 13 Mx+ 0.002 X 0.376 727 PS I 11 PV V 0.360
678 M*A I MnP Mx+ 0 V 0.376 728 M*A I 12 |M| 0 X 0.360
679 APS I 22 Mx− 0.002 V 0.376 729 M*A I 12 Mx+ 0 X 0.360
680 APS I “E” 0.01 X 0.376 730 APS I 13 |M| 0.004 V 0.359
681 TS H 23 (−) X 0.376 731 APS I 11 Mx+ 0.004 X 0.358
682 PS H 13 (+) X 0.376 732 APS I 22 Mx− 0.001 V 0.358
683 PSE I Shr V 0.376 733 APS I 22 Mx− 0.0005 V 0.358
684 PS I 13 PV X 0.375 734 APS I 22 |M| 0.009 X 0.358
685 APS I 22 Mx+ 0.004 X 0.375 735 S I MnP Mx+ V 0.358
686 M*A I 11 Res 0 X 0.375 736 APS I 22 Mx+ 0.005 X 0.357
687 APS I 22 Mx− 0.008 X 0.374 737 S H 23 |m| X 0.357
688 TS H MxP V 0.373 738 S I 12 |M| X 0.357
689 TS I 22 |M| V 0.372 739 APS I “M” 0.02 V 0.357
690 M*A I 11 Mx+ 0 X 0.371 740 TS H MxP X 0.357
691 S H 23 (+) X 0.371 741 APS I 22 Mx+ 0.0005 X 0.357
692 APS I 12 |M| 0.009 X 0.371 742 APS I 12 |M| 0.004 V 0.357
693 APS I 12 Mx+ 0.009 X 0.371 743 APS I 12 Mx+ 0.004 V 0.357
694 APS I MxP Mx− 0.005 X 0.370 744 APS I “E” 0.08 X 0.356
695 APS I 12 |M| 0.007 X 0.370 745 PS H 23 (−) V 0.356
696 APS I 12 Mx+ 0.007 X 0.370 746 APS I 33 Mx− 0.008 V 0.356
697 S H 23 (−) X 0.369 747 M*A I 23 Mx− 0 X 0.355
698 APS I 13 Mx+ 0.005 X 0.369 748 M*A I 23 |M| 0 X 0.355
699 APS I 33 |M| 0.006 V 0.368 749 TS I MnP PV V 0.355
700 PS I 22 |M| V 0.368 750 PS H 11 X 0.355
701 PS I 22 Mx+ V 0.368 751 APS I 12 |M| 0.006 X 0.355
702 PS H 33 V 0.368 752 APS I 12 Mx+ 0.006 X 0.355
703 APS I 23 Mx+ 0.01 V 0.368 753 TS I MxP |M| V 0.354
704 APS I 13 Mx− 0.002 V 0.367 754 TS I MxP Mx+ V 0.354
705 APS I “M” 0.009 X 0.367 755 APS I 23 Mx+ 0.001 X 0.354
706 APS I 33 Mx− 0.005 V 0.367 756 TS I MxP PV V 0.354
707 APS I 33 |M| 0.01 V 0.367 757 M*A I 22 Mx− 0 X 0.354
708 APS I 12 |M| 0.01 X 0.367 758 TS I MxS V 0.354
709 APS I 12 Mx+ 0.01 X 0.367 759 TS I 13 |M| X 0.353
710 APS I 12 |M| 0.004 X 0.367 760 TS I 13 Mx+ X 0.353
711 APS I 12 Mx+ 0.004 X 0.367 761 S I 13 |M| X 0.353
712 S H 22 (+) V 0.367 762 APS I MxS 0.02 V 0.353
713 APS I 12 |M| 0.008 X 0.366 763 TS H 33 |m| X 0.353
714 APS I 12 Mx+ 0.008 X 0.366 764 PS H 13 |m| X 0.352
715 TS H 11 (+) V 0.365 765 APS I 12 |M| 0.002 X 0.352
716 TS H 12 V 0.365 766 APS I 12 Mx+ 0.002 X 0.352
717 TS I MxS PV V 0.364 767 APS I 23 |M| 0.01 X 0.352
718 APS I 13 Mx− 0.0005 X 0.364 768 APS I 23 Mx− 0.01 X 0.352
719 APS I 23 |M| 0.007 X 0.363 769 APS I 13 Mx+ 0.0005 X 0.352
720 APS I 23 Mx− 0.007 X 0.363 770 TS I 13 |M| V 0.352
771 TS I 13 Mx+ V 0.352 821 APS I 22 Mx− 0.01 X 0.345
772 S H 23 V 0.351 822 PS H 11 |m| X 0.345
773 APS I 23 |M| 0.009 X 0.351 823 PSE H Gnl X 0.345
774 APS I 23 Mx− 0.009 X 0.351 824 S I 12 PV V 0.345
775 APS I 13 Mx+ 0.001 V 0.351 825 APS I MxP |M| 0.007 X 0.345
776 APS I 22 |M| 0.01 X 0.351 826 APS I MxP Mx+ 0.007 X 0.345
777 APS I 23 |M| 0.04 V 0.351 827 PS I 11 Mx− V 0.345
778 APS I 23 Mx− 0.04 V 0.351 828 PS H 12 X 0.344
779 APS I 13 Mx+ 0.004 V 0.351 829 PSE H Nml X 0.344
780 APS I 22 Mx− 0.002 X 0.351 830 TS H 11 X 0.343
781 APS I 12 |M| 0.003 X 0.350 831 S H 13 |m| X 0.343
782 APS I 12 Mx+ 0.003 X 0.350 832 TS H 13 (+) X 0.343
783 APS I 13 Mx+ 0.005 V 0.350 833 APS I 11 Res 0.004 X 0.343
784 PS I 12 Mx− X 0.350 834 TS H MnP X 0.343
785 S H Tca X 0.349 835 TS I 12 Mx− V 0.342
786 S H MxS X 0.349 836 M*A I 11 |M| 0 X 0.342
787 TS H MxS X 0.349 837 APS I 33 Mx− 0.004 V 0.341
788 APS I 22 Mx− 0.007 X 0.349 838 S H prs X 0.341
789 S H vM X 0.349 839 PS H 33 X 0.340
790 TS I 11 |M| X 0.349 840 APS I 22 Mx+ 0.005 V 0.340
791 TS I 11 Mx− X 0.349 841 APS I 13 Mx+ 0.003 V 0.339
792 PS H “E” X 0.349 842 TS H 12 |m| X 0.338
793 S H 12 (−) X 0.349 843 APS I MnP Mx+ 0.002 X 0.337
794 PS H 12 |m| X 0.349 844 APS I MxP Mx− 0.002 X 0.337
795 APS I 33 |M| 0.001 X 0.348 845 M*A I MnP Mx+ 0 X 0.337
796 PS H MnP X 0.348 846 S H prs (−) V 0.336
797 PS H MxS X 0.348 847 M*A I 33 Mx− 0 V 0.336
798 PS H “M” X 0.348 848 M*A I MxP Mx− 0 X 0.336
799 TS I MnP |M| V 0.348 849 APS I 23 |M| 0.06 V 0.335
800 TS I MnP Mx− V 0.348 850 APS I 23 Mx− 0.06 V 0.335
801 APS I 13 |M| 0.003 V 0.348 851 APS I 13 Mx+ 0.006 X 0.335
802 PS H 22 |m| X 0.348 852 S I 13 Mx+ X 0.335
803 APS I 22 Mx− 0.009 X 0.347 853 PS H 23 X 0.335
804 TS H 11 |m| X 0.347 854 APS I “E” 0.009 X 0.334
805 APS I “E” 0.01 V 0.347 855 APS I 13 |M| 0.006 V 0.334
806 PS H MxP X 0.347 856 APS I “M” 0.01 V 0.334
807 APS I 33 Mx+ 0.001 X 0.347 857 APS I 13 |M| 0.005 V 0.333
808 TS H 11 (−) X 0.347 858 S H 13 X 0.333
809 APS I 13 Mx+ 0.006 V 0.347 859 APS I “M” 0.009 V 0.333
810 TS I MxP Mx− X 0.347 860 PS H 23 V 0.333
811 PS I 11 |M| X 0.347 861 APS I MnP Mx+ 0.003 X 0.333
812 TSE H Shr X 0.346 862 APS I MxP Mx− 0.003 X 0.332
813 PSE I Gnl PV V 0.346 863 PS H 33 |m| X 0.332
814 APS I 22 Mx− 0.001 X 0.346 864 APS I 33 Mx− 0.007 V 0.332
815 APS I 22 Mx− 0.0005 X 0.346 865 PS H 23 |m| X 0.332
816 APS I 33 Mx− 0.003 V 0.346 866 PS H “E” V 0.332
817 PS I 11 |M| V 0.346 867 PS I 23 Mx+ X 0.331
818 PSE H Shr X 0.346 868 APS I MnP Mx+ 0.004 X 0.331
819 S I 13 Mx− X 0.346 869 APS I 11 Mx− 0.002 X 0.331
820 APS I 22 Mx+ 0.002 V 0.346 870 M*A I “M” 0 V 0.331
871 PS I 12 |M| X 0.331 921 APS I 22 Mx+ 0.01 V 0.320
872 PS I 12 Mx+ X 0.331 922 S H prs |m| X 0.320
873 APS I 13 Mx+ 0.007 V 0.330 923 APS I 33 |M| 0.002 X 0.319
874 TS I 12 PV V 0.330 924 APS I MxP Mx− 0.006 X 0.319
875 APS I MxP Mx− 0.004 X 0.330 925 APS I 11 Mx− 0.005 X 0.319
876 APS I 33 Mx− 0.009 V 0.330 926 S H 12 |m| X 0.319
877 TS H 23 (+) X 0.330 927 M*A I MxP |M| 0 V 0.318
878 APS I 11 Mx− 0.003 X 0.330 928 M*A I MxP Mx+ 0 V 0.318
879 S H 3rd |m| X 0.330 929 APS I 33 Mx− 0.006 V 0.318
880 S I MnP Mx+ X 0.329 930 APS I 13 |M| 0.005 X 0.317
881 PS H 11 (−) X 0.329 931 M*A I 13 Mx+ 0 X 0.317
882 PS I 23 |M| X 0.329 932 APS I MnP Mx+ 0.005 X 0.317
883 PS I 23 Mx− X 0.329 933 APS I 11 |M| 0.005 X 0.317
884 PS I “E” X 0.329 934 APS I MxP |M| 0.01 V 0.315
885 TS H 13 (+) V 0.329 935 APS I MxP Mx+ 0.01 V 0.315
886 M*A I MxS 0 V 0.328 936 M*A I 12 Mx− 0 X 0.315
887 M*A I MnP |M| 0 V 0.328 937 APS I 13 |M| 0.004 X 0.314
888 M*A I MnP Mx− 0 V 0.328 938 APS I 11 Mx− 0.004 X 0.314
889 APS I 23 Mx+ 0.01 X 0.328 939 APS I 12 |M| 0.007 V 0.314
890 APS I MxP |M| 0.008 V 0.327 940 APS I 12 Mx+ 0.007 V 0.314
891 APS I MxP Mx+ 0.008 V 0.327 941 APS I 33 Mx− 0.0005 X 0.314
892 APS I MnP |M| 0.008 V 0.327 942 PS H 11 (+) X 0.313
893 APS I MnP Mx− 0.008 V 0.327 943 APS I 23 |M| 0.02 X 0.313
894 APS I MxS 0.008 V 0.327 944 APS I 23 Mx− 0.02 X 0.313
895 S H MnP X 0.327 945 APS I MnP Mx+ 0.007 X 0.313
896 APS I 12 |M| 0.03 X 0.327 946 S H 12 (+) V 0.313
897 APS I 12 Mx+ 0.03 X 0.327 947 TS H 11 (+) X 0.312
898 PS I 11 Mx+ X 0.326 948 APS I 23 |M| 0.03 X 0.312
899 TSE H Gnl X 0.325 949 APS I 23 Mx− 0.03 X 0.312
900 S H 23 X 0.325 950 APS I MxS 0.01 V 0.312
901 APS I 12 |M| 0.006 V 0.325 951 APS I 13 Mx+ 0.008 V 0.312
902 APS I 12 Mx+ 0.006 V 0.325 952 APS I MxP Mx− 0.007 X 0.312
903 TS I 22 Mx+ V 0.324 953 TS H 12 (+) V 0.311
904 S H 13 (−) X 0.324 954 M*A I 23 Mx+ 0 X 0.311
905 TS I 11 Mx+ V 0.324 955 M*A I 11 Mx− 0 X 0.311
906 APS I 13 Mx− 0.003 V 0.324 956 M*A I 12 Mx− 0 V 0.310
907 APS I 22 |M| 0.007 V 0.323 957 S H 13 (+) X 0.310
908 PS H 13 X 0.323 958 APS I 11 Mx− 0.001 X 0.309
909 APS I 12 |M| 0.02 X 0.323 959 APS I “E” 0.02 V 0.309
910 APS I 12 Mx+ 0.02 X 0.323 960 APS I 12 |M| 0.04 X 0.308
911 APS I 13 |M| 0.001 X 0.322 961 APS I 12 Mx+ 0.04 X 0.308
912 TS H 12 (−) X 0.322 962 TS H 13 X 0.308
913 APS I MnP Mx+ 0.006 X 0.322 963 S I 12 Mx+ V 0.308
914 TSE H Nml X 0.322 964 APS I 13 |M| 0.007 V 0.307
915 TS H 33 X 0.322 965 PS H 12 V 0.307
916 TS H 22 |m| X 0.321 966 APS I MxP |M| 0.02 V 0.307
917 APS I 12 |M| 0.005 V 0.321 967 APS I MxP Mx+ 0.02 V 0.307
918 APS I 12 Mx+ 0.005 V 0.321 968 TS I 12 Mx− X 0.306
919 APS I 33 Mx+ 0.002 X 0.321 969 APS I 11 Mx− 0.0005 X 0.306
920 APS I 12 Mx− 0.004 V 0.321 970 APS I “E” 0.07 V 0.305
971 APS I MnP |M| 0.04 X 0.305 1021 APS I 12 Mx− 0.002 X 0.292
972 APS I MnP Mx− 0.04 X 0.305 1022 S I 12 Mx− X 0.292
973 APS I 11 Mx− 0.006 X 0.305 1023 APS I 33 Mx− 0.01 V 0.291
974 APS I 11 Mx+ 0.005 X 0.305 1024 APS I 12 Mx− 0.007 X 0.291
975 APS I 11 Res 0.005 X 0.305 1025 APS I 11 Mx+ 0.006 X 0.291
976 APS I MnP Mx+ 0.008 X 0.304 1026 APS I 11 |M| 0.0005 X 0.291
977 S I 11 Mx+ X 0.304 1027 APS I 22 Mx+ 0.009 V 0.290
978 APS I 13 |M| 0.006 X 0.304 1028 APS I 13 Mx+ 0.007 X 0.289
979 APS I 11 |M| 0.006 X 0.304 1029 APS I 22 Mx+ 0.004 V 0.289
980 TS I 11 Mx+ X 0.303 1030 PS I 33 Mx+ X 0.288
981 APS I 13 Mx− 0.004 V 0.302 1031 PS I 22 Mx− X 0.288
982 APS I 13 |M| 0.002 X 0.302 1032 APS I 11 Res 0.0005 X 0.288
983 TS I 12 |M| V 0.302 1033 APS I 33 Mx+ 0.003 X 0.287
984 TS I 12 Mx+ V 0.302 1034 APS I 12 |M| 0.01 V 0.287
985 APS I 33 Mx− 0.001 X 0.301 1035 APS I 12 Mx+ 0.01 V 0.287
986 PS I 11 Mx− X 0.301 1036 APS I MxS 0.009 V 0.287
987 APS I 12 Mx− 0.006 X 0.300 1037 APS I 11 |M| 0.008 X 0.287
988 PSE H Shr V 0.300 1038 APS I 11 Mx− 0.008 X 0.287
989 APS I 12 |M| 0.008 V 0.300 1039 APS I 33 |M| 0.003 X 0.286
990 APS I 12 Mx+ 0.008 V 0.300 1040 M*A I 13 |M| 0 V 0.286
991 APS I 23 Mx+ 0.02 X 0.299 1041 APS I 12 |M| 0.05 X 0.286
992 APS I 23 |M| 0.04 X 0.299 1042 APS I 12 Mx+ 0.05 X 0.286
993 APS I 23 Mx− 0.04 X 0.299 1043 APS I 12 |M| 0.009 V 0.285
994 S H 3rd V 0.298 1044 APS I 12 Mx+ 0.009 V 0.285
995 APS I MnP Mx+ 0.009 X 0.298 1045 TS H 23 X 0.285
996 APS I MnP |M| 0.01 V 0.298 1046 PS H 12 (−) X 0.284
997 APS I MnP Mx− 0.01 V 0.298 1047 APS I MnP |M| 0.009 V 0.283
998 PS H 13 V 0.298 1048 APS I MnP Mx− 0.009 V 0.283
999 APS I 13 Mx− 0.001 X 0.296 1049 TS I 11 PV V 0.282
1000 TS H 22 (+) V 0.296 1050 PS I 13 |M| X 0.282
1001 M*A I 13 Mx− 0 V 0.296 1051 PS I 13 Mx+ X 0.282
1002 PSE I Nml PV V 0.296 1052 APS I MxP |M| 0.03 V 0.281
1003 APS I 33 Mx− 0.003 X 0.296 1053 APS I MxP Mx+ 0.03 V 0.281
1004 M*A I 13 |M| 0 X 0.295 1054 S H 22 |m| X 0.281
1005 APS I 13 |M| 0.008 V 0.295 1055 TS H 13 V 0.280
1006 S H 11 X 0.294 1056 APS I 22 |M| 0.004 X 0.279
1007 TS H 22 X 0.294 1057 APS I 13 Mx+ 0.009 V 0.279
1008 S H 22 X 0.294 1058 M*A I 13 Mx+ 0 V 0.278
1009 APS I 11 |M| 0.007 X 0.294 1059 S H 3rd X 0.278
1010 APS I 11 Mx− 0.007 X 0.294 1060 APS I 13 Mx− 0.005 V 0.278
1011 S H 33 X 0.293 1061 APS I 22 Mx− 0.004 X 0.278
1012 PS H 13 (+) V 0.293 1062 PS H 12 (+) V 0.278
1013 APS I 23 Mx+ 0.002 X 0.293 1063 APS I 13 |M| 0.009 V 0.278
1014 APS I MxP |M| 0.009 V 0.293 1064 S H MxP X 0.277
1015 APS I MxP Mx+ 0.009 V 0.293 1065 APS I 11 Res 0.006 X 0.276
1016 PSE I Gnl V 0.293 1066 PS H “M” V 0.276
1017 APS I MnP |M| 0.005 V 0.292 1067 PS I 11 Mx+ V 0.276
1018 APS I MnP Mx− 0.005 V 0.292 1068 PS H MnP V 0.276
1019 APS I MxP Mx− 0.008 X 0.292 1069 PSE I Nml V 0.275
1020 APS I 13 |M| 0.003 X 0.292 1070 APS I 11 Mx+ 0.0005 X 0.275
1071 APS I 13 |M| 0.01 V 0.275 1121 PS H 22 (+) V 0.255
1072 APS I 13 Mx+ 0.01 V 0.275 1122 APS I 11 Mx− 0.0005 V 0.255
1073 APS I 12 Mx− 0.005 X 0.274 1123 TS H 12 |m| V 0.255
1074 PSE H Gnl V 0.274 1124 M*A I 33 Mx+ 0 X 0.255
1075 APS I 13 |M| 0.007 X 0.273 1125 S H 11 (+) V 0.254
1076 APS I 11 |M| 0.01 X 0.273 1126 PS H 13 |m| V 0.254
1077 APS I 11 Mx− 0.01 X 0.273 1127 APS I 12 |M| 0.06 X 0.253
1078 PS H MxS V 0.272 1128 APS I 12 Mx+ 0.06 X 0.253
1079 PS H 22 |m| V 0.272 1129 S H 11 |m| X 0.253
1080 APS I 13 Mx+ 0.008 X 0.271 1130 APS I 11 Mx+ 0.008 X 0.251
1081 APS I 12 Mx− 0.004 X 0.271 1131 APS I 23 Mx+ 0.008 X 0.251
1082 S H 33 |m| X 0.271 1132 M*A I 33 Mx− 0 X 0.251
1083 APS I 11 Mx+ 0.007 X 0.270 1133 APS I 11 |M| 0.002 V 0.250
1084 APS I 22 Mx+ 0.008 V 0.270 1134 APS I 11 Res 0.002 V 0.250
1085 APS I 11 |M| 0.009 X 0.270 1135 APS I 11 Mx+ 0.003 V 0.250
1086 APS I 11 Mx− 0.009 X 0.270 1136 APS I 33 Mx− 0.006 X 0.249
1087 APS I 22 Mx+ 0.006 V 0.270 1137 APS I 11 Res 0.008 X 0.247
1088 APS I 11 Res 0.007 X 0.270 1138 APS I 23 Mx+ 0.005 X 0.245
1089 S H prs |m| V 0.270 1139 APS I 13 Mx− 0.006 V 0.245
1090 S H 12 |m| V 0.269 1140 TS H 33 (+) X 0.245
1091 PS H MxP V 0.269 1141 APS I 13 Mx− 0.002 X 0.245
1092 APS I 13 |M| 0.01 X 0.267 1142 TS H 23 |m| V 0.244
1093 APS I 13 Mx+ 0.01 X 0.267 1143 APS I 23 |M| 0.05 X 0.244
1094 APS I 12 Mx− 0.005 V 0.267 1144 APS I 23 Mx− 0.05 X 0.244
1095 M*A I 22 Mx+ 0 V 0.266 1145 APS I 11 |M| 0.003 V 0.244
1096 APS I 13 |M| 0.008 X 0.266 1146 S H 3rd |m| V 0.240
1097 APS I 23 Mx+ 0.003 X 0.266 1147 APS I 11 Res 0.003 V 0.240
1098 APS I 13 Mx+ 0.009 X 0.266 1148 M*A I 12 |M| 0 V 0.240
1099 APS I 22 Mx+ 0.003 V 0.266 1149 M*A I 12 Mx+ 0 V 0.240
1100 APS I 33 |M| 0.005 X 0.265 1150 APS I 12 Mx− 0.008 X 0.240
1101 APS I 13 |M| 0.009 X 0.264 1151 APS I 23 Mx+ 0.006 X 0.237
1102 APS I 33 Mx− 0.002 X 0.264 1152 S H 23 |m| V 0.237
1103 M*A I 33 |M| 0 X 0.263 1153 APS I 12 Mx− 0.003 X 0.237
1104 APS I 23 Mx+ 0.004 X 0.263 1154 PS H 12 |m| V 0.237
1105 APS I 11 Mx+ 0.001 V 0.262 1155 APS I 33 Mx− 0.007 X 0.237
1106 APS I 23 Mx+ 0.009 X 0.262 1156 PS H 33 |m| V 0.236
1107 TS H 13 |m| V 0.262 1157 APS I 22 Mx+ 0.02 X 0.236
1108 APS I 11 Res 0.001 V 0.261 1158 APS I 12 |M| 0.02 V 0.236
1109 APS I 11 |M| 0.001 V 0.261 1159 APS I 12 Mx+ 0.02 V 0.236
1110 APS I MxP Mx− 0.008 V 0.260 1160 APS I 12 Mx− 0.009 X 0.234
1111 PS H 22 V 0.259 1161 APS I 12 Mx− 0.006 V 0.233
1112 APS I 33 Mx+ 0.005 X 0.259 1162 APS I 23 Mx+ 0.007 X 0.232
1113 PSE H Nml V 0.259 1163 TS I 11 |M| V 0.231
1114 APS I 22 Mx+ 0.007 V 0.259 1164 TS I 11 Mx− V 0.231
1115 APS I 22 |M| 0.02 V 0.258 1165 PS I 22 PV V 0.228
1116 PS H 23 (+) X 0.258 1166 M*A I 13 Mx− 0 X 0.227
1117 APS I 33 |M| 0.004 X 0.258 1167 M*A I 11 Res 0 V 0.227
1118 APS I 33 Mx+ 0.004 X 0.256 1168 PS H 23 |m| V 0.226
1119 APS I MnP Mx+ 0.008 V 0.256 1169 TS H 11 (−) V 0.226
1120 APS I 11 Mx+ 0.002 V 0.255 1170 M*A I 11 Mx+ 0 V 0.225
1171 APS I 12 Mx− 0.01 X 0.224 1221 APS I 33 Mx+ 0.01 X 0.188
1172 APS I 33 Mx− 0.005 X 0.224 1222 PS H 11 (−) V 0.187
1173 APS I 33 |M| 0.007 X 0.224 1223 APS I 12 Mx− 0.008 V 0.187
1174 PS H 11 |m| V 0.223 1224 APS I 11 Mx− 0.003 V 0.186
1175 TS H 11 |m| V 0.223 1225 S H 11 |m| V 0.185
1176 APS I 23 |M| 0.06 X 0.223 1226 APS I 12 |M| 0.03 V 0.183
1177 APS I 23 Mx− 0.06 X 0.223 1227 APS I 12 Mx+ 0.03 V 0.183
1178 TS H 11 V 0.223 1228 APS I 12 Mx− 0.01 V 0.182
1179 S H 12 (−) V 0.222 1229 APS I 33 Mx− 0.01 X 0.181
1180 TS H 23 V 0.222 1230 APS I 11 Mx− 0.004 V 0.181
1181 APS I 11 Mx− 0.001 V 0.222 1231 APS I 33 Mx− 0.009 X 0.179
1182 APS I 33 |M| 0.006 X 0.222 1232 APS I 11 Res 0.004 V 0.178
1183 APS I MxP Mx− 0.009 X 0.222 1233 M*A I 11 Mx− 0 V 0.177
1184 APS I 13 Mx− 0.003 X 0.221 1234 APS I 12 Mx− 0.009 V 0.173
1185 TS H 33 |m| V 0.221 1235 APS I 11 Mx− 0.005 V 0.172
1186 APS I 33 |M| 0.008 X 0.219 1236 APS I 11 Res 0.009 X 0.170
1187 PS I 12 Mx− V 0.219 1237 APS I 11 |M| 0.005 V 0.170
1188 TS H 13 (−) X 0.217 1238 APS I 13 Mx− 0.007 X 0.170
1189 APS I 33 Mx+ 0.007 X 0.217 1239 APS I 12 |M| 0.04 V 0.168
1190 APS I 33 Mx− 0.008 X 0.215 1240 APS I 12 Mx+ 0.04 V 0.168
1191 APS I MxP Mx− 0.01 X 0.215 1241 APS I 12 |M| 0.07 X 0.167
1192 APS I MnP Mx+ 0.01 X 0.215 1242 APS I 12 Mx+ 0.07 X 0.167
1193 TS I MnP Mx+ X 0.214 1243 PS I 13 Mx− X 0.162
1194 S H 33 |m| V 0.213 1244 APS I 11 Mx+ 0.005 V 0.159
1195 APS I 33 Mx+ 0.006 X 0.213 1245 APS I 11 Res 0.005 V 0.159
1196 TS H 22 |m| V 0.212 1246 PS H 11 (+) V 0.159
1197 S H 22 |m| V 0.209 1247 APS I 11 Mx− 0.006 V 0.159
1198 APS I 22 Mx− 0.02 X 0.209 1248 APS I 11 |M| 0.006 V 0.158
1199 APS I 33 Mx+ 0.008 X 0.209 1249 TS I MxP Mx− V 0.154
1200 S H 13 V 0.208 1250 PS H 33 (+) X 0.154
1201 TS H 22 V 0.207 1251 APS I 11 |M| 0.02 X 0.151
1202 PS H 11 V 0.206 1252 APS I 11 Mx− 0.02 X 0.151
1203 APS I 33 |M| 0.009 X 0.206 1253 APS I 11 |M| 0.008 V 0.150
1204 APS I 11 Mx+ 0.009 X 0.204 1254 APS I 11 Mx− 0.008 V 0.150
1205 PS H 12 (−) V 0.203 1255 APS I 13 |M| 0.02 X 0.150
1206 APS I 11 |M| 0.004 V 0.203 1256 APS I 13 Mx+ 0.02 X 0.150
1207 TS H 12 (−) V 0.202 1257 APS I 13 Mx− 0.008 V 0.150
1208 APS I 12 Mx− 0.007 V 0.202 1258 APS I 11 |M| 0.02 V 0.149
1209 M*A I 11 |M| 0 V 0.201 1259 APS I 11 Mx− 0.02 V 0.149
1210 APS I 11 Mx+ 0.004 V 0.200 1260 PS H 33 (+) V 0.149
1211 S H 13 |m| V 0.200 1261 APS I 11 |M| 0.007 V 0.148
1212 APS I 33 Mx− 0.004 X 0.199 1262 APS I 11 Mx− 0.007 V 0.148
1213 APS I 33 Mx+ 0.009 X 0.199 1263 APS I 11 Mx+ 0.006 V 0.148
1214 APS I 22 Mx− 0.02 V 0.198 1264 APS I 13 Mx− 0.009 X 0.147
1215 APS I 13 Mx− 0.007 V 0.196 1265 APS I 13 Mx− 0.01 X 0.147
1216 APS I 11 Mx− 0.002 V 0.196 1266 APS I 13 Mx− 0.008 X 0.145
1217 APS I 33 |M| 0.01 X 0.191 1267 APS I MnP Mx+ 0.009 V 0.144
1218 APS I 13 Mx− 0.005 X 0.190 1268 APS I 12 |M| 0.05 V 0.142
1219 APS I 13 Mx− 0.004 X 0.190 1269 APS I 12 Mx+ 0.05 V 0.142
1220 APS I 13 Mx− 0.006 X 0.189 1270 APS I MxP Mx− 0.009 V 0.139
1271 APS I MxS 0.04 X 0.138 1321 APS I “E” Res 0.02 V 0.059
1272 APS I 11 Res 0.007 V 0.138 1322 APS I MxS Res 0.02 V 0.059
1273 APS I 11 Mx+ 0.007 V 0.137 1323 APS I MnP Res 0.02 V 0.059
1274 APS I 11 |M| 0.009 V 0.136 1324 APS I MxP Res 0.02 V 0.059
1275 APS I 11 Mx− 0.009 V 0.136 1325 APS I 33 Res 0.02 V 0.059
1276 APS I 13 Mx− 0.009 V 0.135 1326 APS I 22 Res 0.02 V 0.059
1277 APS I 11 Mx+ 0.009 V 0.135 1327 APS I “M” Res 0.01 V 0.059
1278 APS I 11 Res 0.006 V 0.135 1328 APS I “E” Res 0.01 V 0.059
1279 APS I 11 Mx+ 0.008 V 0.134 1329 APS I MxS Res 0.01 V 0.059
1280 PS I 33 Mx+ V 0.132 1330 APS I 23 Res 0.01 V 0.059
1281 APS I 11 |M| 0.01 V 0.132 1331 APS I MnP Res 0.01 V 0.059
1282 APS I 11 Mx− 0.01 V 0.132 1332 APS I MxP Res 0.01 V 0.059
1283 APS I 12 |M| 0.06 V 0.130 1333 APS I 33 Res 0.01 V 0.059
1284 APS I 12 Mx+ 0.06 V 0.130 1334 APS I 22 Res 0.01 V 0.059
1285 APS I 22 Mx+ 0.02 V 0.127 1335 APS I “M” Res 0.009 V 0.059
1286 APS I 11 Res 0.008 V 0.121 1336 APS I “E” Res 0.009 V 0.059
1287 PS I MnP Mx+ X 0.120 1337 APS I MxS Res 0.009 V 0.059
1288 PS I MxP Mx− X 0.120 1338 APS I 23 Res 0.009 V 0.059
1289 APS I 12 |M| 0.07 V 0.118 1339 APS I MnP Res 0.009 V 0.059
1290 APS I 12 Mx+ 0.07 V 0.118 1340 APS I MxP Res 0.009 V 0.059
1291 APS I 11 Mx+ 0.01 V 0.117 1341 APS I 33 Res 0.009 V 0.059
1292 PS I 13 Mx− V 0.117 1342 APS I 22 Res 0.009 V 0.059
1293 PS I MxP Mx− V 0.117 1343 APS I “M” Res 0.008 V 0.059
1294 PS I 22 Mx− V 0.117 1344 APS I “E” Res 0.008 V 0.059
1295 PS I MnP Mx+ V 0.117 1345 APS I MxS Res 0.008 V 0.059
1296 APS I 13 |M| 0.02 V 0.115 1346 APS I 23 Res 0.008 V 0.059
1297 APS I 13 Mx+ 0.02 V 0.115 1347 APS I MnP Res 0.008 V 0.059
1298 APS I 11 Res 0.009 V 0.114 1348 APS I MxP Res 0.008 V 0.059
1299 APS I 11 Mx+ 0.01 X 0.112 1349 APS I 33 Res 0.008 V 0.059
1300 APS I MnP Mx+ 0.01 V 0.111 1350 APS I 22 Res 0.008 V 0.059
1301 APS I 13 Mx− 0.01 V 0.109 1351 APS I “M” Res 0.007 V 0.059
1302 APS I MxP Mx− 0.01 V 0.106 1352 APS I “E” Res 0.007 V 0.059
1303 TS I MnP Mx+ V 0.100 1353 APS I MxS Res 0.007 V 0.059
1304 APS I MnP |M| 0.04 V 0.099 1354 APS I 23 Res 0.007 V 0.059
1305 APS I MnP Mx− 0.04 V 0.099 1355 APS I MnP Res 0.007 V 0.059
1306 APS I MxS 0.04 V 0.095 1356 APS I MxP Res 0.007 V 0.059
1307 APS I “E” 0.08 V 0.085 1357 APS I 33 Res 0.007 V 0.059
1308 M*A I “M” Res 0 V 0.059 1358 APS I 22 Res 0.007 V 0.059
1309 M*A I “E” Res 0 V 0.059 1359 APS I “M” Res 0.006 V 0.059
1310 M*A I MxS Res 0 V 0.059 1360 APS I “E” Res 0.006 V 0.059
1311 M*A I 23 Res 0 V 0.059 1361 APS I MxS Res 0.006 V 0.059
1312 M*A I 13 Res 0 V 0.059 1362 APS I 23 Res 0.006 V 0.059
1313 M*A I 12 Res 0 V 0.059 1363 APS I MnP Res 0.006 V 0.059
1314 M*A I MnP Res 0 V 0.059 1364 APS I MxP Res 0.006 V 0.059
1315 M*A I MxP Res 0 V 0.059 1365 APS I 33 Res 0.006 V 0.059
1316 M*A I 33 Res 0 V 0.059 1366 APS I 22 Res 0.006 V 0.059
1317 M*A I 22 Res 0 V 0.059 1367 APS I “M” Res 0.005 V 0.059
1318 APS I “M” Res 0.03 V 0.059 1368 APS I “E” Res 0.005 V 0.059
1319 APS I “E” Res 0.03 V 0.059 1369 APS I MxS Res 0.005 V 0.059
1320 APS I “M” Res 0.02 V 0.059 1370 APS I 23 Res 0.005 V 0.059
1371 APS I MnP Res 0.005 V 0.059 1421 APS I 23 Mx− 0.07 V 0.048
1372 APS I MxP Res 0.005 V 0.059 1422 APS I 23 Mx+ 0.02 V 0.046
1373 APS I 33 Res 0.005 V 0.059 1423 M*A I “M” Res 0 X 0.035
1374 APS I 22 Res 0.005 V 0.059 1424 M*A I “E” Res 0 X 0.035
1375 APS I “M” Res 0.004 V 0.059 1425 M*A I MxS Res 0 X 0.035
1376 APS I “E” Res 0.004 V 0.059 1426 M*A I 23 Res 0 X 0.035
1377 APS I MxS Res 0.004 V 0.059 1427 M*A I 13 Res 0 X 0.035
1378 APS I 23 Res 0.004 V 0.059 1428 M*A I 12 Res 0 X 0.035
1379 APS I MnP Res 0.004 V 0.059 1429 M*A I MnP Res 0 X 0.035
1380 APS I MxP Res 0.004 V 0.059 1430 M*A I MxP Res 0 X 0.035
1381 APS I 33 Res 0.004 V 0.059 1431 M*A I 33 Res 0 X 0.035
1382 APS I 22 Res 0.004 V 0.059 1432 M*A I 22 Res 0 X 0.035
1383 APS I “M” Res 0.003 V 0.059 1433 APS I “M” Res 0.03 X 0.035
1384 APS I “E” Res 0.003 V 0.059 1434 APS I “E” Res 0.03 X 0.035
1385 APS I MxS Res 0.003 V 0.059 1435 APS I “M” Res 0.02 X 0.035
1386 APS I 23 Res 0.003 V 0.059 1436 APS I “E” Res 0.02 X 0.035
1387 APS I MnP Res 0.003 V 0.059 1437 APS I MxS Res 0.02 X 0.035
1388 APS I MxP Res 0.003 V 0.059 1438 APS I MnP Res 0.02 X 0.035
1389 APS I 33 Res 0.003 V 0.059 1439 APS I MxP Res 0.02 X 0.035
1390 APS I 22 Res 0.003 V 0.059 1440 APS I 33 Res 0.02 X 0.035
1391 APS I “M” Res 0.002 V 0.059 1441 APS I 22 Res 0.02 X 0.035
1392 APS I “E” Res 0.002 V 0.059 1442 APS I “M” Res 0.01 X 0.035
1393 APS I MxS Res 0.002 V 0.059 1443 APS I “E” Res 0.01 X 0.035
1394 APS I 23 Res 0.002 V 0.059 1444 APS I MxS Res 0.01 X 0.035
1395 APS I MnP Res 0.002 V 0.059 1445 APS I 23 Res 0.01 X 0.035
1396 APS I MxP Res 0.002 V 0.059 1446 APS I MnP Res 0.01 X 0.035
1397 APS I 33 Res 0.002 V 0.059 1447 APS I MxP Res 0.01 X 0.035
1398 APS I 22 Res 0.002 V 0.059 1448 APS I 33 Res 0.01 X 0.035
1399 APS I “M” Res 0.001 V 0.059 1449 APS I 22 Res 0.01 X 0.035
1400 APS I “E” Res 0.001 V 0.059 1450 APS I “M” Res 0.009 X 0.035
1401 APS I MxS Res 0.001 V 0.059 1451 APS I “E” Res 0.009 X 0.035
1402 APS I 23 Res 0.001 V 0.059 1452 APS I MxS Res 0.009 X 0.035
1403 APS I MnP Res 0.001 V 0.059 1453 APS I 23 Res 0.009 X 0.035
1404 APS I MxP Res 0.001 V 0.059 1454 APS I MnP Res 0.009 X 0.035
1405 APS I 33 Res 0.001 V 0.059 1455 APS I MxP Res 0.009 X 0.035
1406 APS I 22 Res 0.001 V 0.059 1456 APS I 33 Res 0.009 X 0.035
1407 APS I “M” Res 0.0005 V 0.059 1457 APS I 22 Res 0.009 X 0.035
1408 APS I “E” Res 0.0005 V 0.059 1458 APS I “M” Res 0.008 X 0.035
1409 APS I MxS Res 0.0005 V 0.059 1459 APS I “E” Res 0.008 X 0.035
1410 APS I 23 Res 0.0005 V 0.059 1460 APS I MxS Res 0.008 X 0.035
1411 APS I MnP Res 0.0005 V 0.059 1461 APS I 23 Res 0.008 X 0.035
1412 APS I MxP Res 0.0005 V 0.059 1462 APS I MnP Res 0.008 X 0.035
1413 APS I 33 Res 0.0005 V 0.059 1463 APS I MxP Res 0.008 X 0.035
1414 APS I 22 Res 0.0005 V 0.059 1464 APS I 33 Res 0.008 X 0.035
1415 APS I 33 |M| 0.02 V 0.059 1465 APS I 22 Res 0.008 X 0.035
1416 APS I MxP Mx− 0.02 V 0.059 1466 APS I “M” Res 0.007 X 0.035
1417 APS I 33 Mx− 0.02 V 0.059 1467 APS I “E” Res 0.007 X 0.035
1418 APS I MnP Mx+ 0.02 V 0.059 1468 APS I MxS Res 0.007 X 0.035
1419 APS I 33 Mx+ 0.02 V 0.059 1469 APS I 23 Res 0.007 X 0.035
1420 APS I 23 |M| 0.07 V 0.048 1470 APS I MnP Res 0.007 X 0.035
1471 APS I MxP Res 0.007 X 0.035 1521 APS I 22 Res 0.001 X 0.035
1472 APS I 33 Res 0.007 X 0.035 1522 APS I “M” Res 0.0005 X 0.035
1473 APS I 22 Res 0.007 X 0.035 1523 APS I “E” Res 0.0005 X 0.035
1474 APS I “M” Res 0.006 X 0.035 1524 APS I MxS Res 0.0005 X 0.035
1475 APS I “E” Res 0.006 X 0.035 1525 APS I 23 Res 0.0005 X 0.035
1476 APS I MxS Res 0.006 X 0.035 1526 APS I MnP Res 0.0005 X 0.035
1477 APS I 23 Res 0.006 X 0.035 1527 APS I MxP Res 0.0005 X 0.035
1478 APS I MnP Res 0.006 X 0.035 1528 APS I 33 Res 0.0005 X 0.035
1479 APS I MxP Res 0.006 X 0.035 1529 APS I 22 Res 0.0005 X 0.035
1480 APS I 33 Res 0.006 X 0.035 1530 APS I 33 |M| 0.02 X 0.035
1481 APS I 22 Res 0.006 X 0.035 1531 APS I MxP Mx− 0.02 X 0.035
1482 APS I “M” Res 0.005 X 0.035 1532 APS I 33 Mx− 0.02 X 0.035
1483 APS I “E” Res 0.005 X 0.035 1533 APS I MnP Mx+ 0.02 X 0.035
1484 APS I MxS Res 0.005 X 0.035 1534 APS I 33 Mx+ 0.02 X 0.035
1485 APS I 23 Res 0.005 X 0.035 1535 PS H 22 (−) V NaN
1486 APS I MnP Res 0.005 X 0.035 1536 PS H 13 (−) V NaN
1487 APS I MxP Res 0.005 X 0.035 1537 APS I 11 Mx+ 0.02 V NaN
1488 APS I 33 Res 0.005 X 0.035 1538 APS I 11 Mx+ 0.03 V NaN
1489 APS I 22 Res 0.005 X 0.035 1539 APS I 22 Mx+ 0.03 V NaN
1490 APS I “M” Res 0.004 X 0.035 1540 APS I 33 Mx+ 0.03 V NaN
1491 APS I “E” Res 0.004 X 0.035 1541 APS I MnP Mx+ 0.03 V NaN
1492 APS I MxS Res 0.004 X 0.035 1542 APS I 13 Mx+ 0.03 V NaN
1493 APS I 23 Res 0.004 X 0.035 1543 APS I 23 Mx+ 0.03 V NaN
1494 APS I MnP Res 0.004 X 0.035 1544 APS I 11 Mx+ 0.04 V NaN
1495 APS I MxP Res 0.004 X 0.035 1545 APS I 22 Mx+ 0.04 V NaN
1496 APS I 33 Res 0.004 X 0.035 1546 APS I 33 Mx+ 0.04 V NaN
1497 APS I 22 Res 0.004 X 0.035 1547 APS I MxP Mx+ 0.04 V NaN
1498 APS I “M” Res 0.003 X 0.035 1548 APS I MnP Mx+ 0.04 V NaN
1499 APS I “E” Res 0.003 X 0.035 1549 APS I 13 Mx+ 0.04 V NaN
1500 APS I MxS Res 0.003 X 0.035 1550 APS I 23 Mx+ 0.04 V NaN
1501 APS I 23 Res 0.003 X 0.035 1551 APS I 11 Mx+ 0.05 V NaN
1502 APS I MnP Res 0.003 X 0.035 1552 APS I 22 Mx+ 0.05 V NaN
1503 APS I MxP Res 0.003 X 0.035 1553 APS I 33 Mx+ 0.05 V NaN
1504 APS I 33 Res 0.003 X 0.035 1554 APS I MxP Mx+ 0.05 V NaN
1505 APS I 22 Res 0.003 X 0.035 1555 APS I MnP Mx+ 0.05 V NaN
1506 APS I “M” Res 0.002 X 0.035 1556 APS I 13 Mx+ 0.05 V NaN
1507 APS I “E” Res 0.002 X 0.035 1557 APS I 23 Mx+ 0.05 V NaN
1508 APS I MxS Res 0.002 X 0.035 1558 APS I MxS 0.05 V NaN
1509 APS I 23 Res 0.002 X 0.035 1559 APS I “M” 0.05 V NaN
1510 APS I MnP Res 0.002 X 0.035 1560 APS I 11 Mx+ 0.06 V NaN
1511 APS I MxP Res 0.002 X 0.035 1561 APS I 22 Mx+ 0.06 V NaN
1512 APS I 33 Res 0.002 X 0.035 1562 APS I 33 Mx+ 0.06 V NaN
1513 APS I 22 Res 0.002 X 0.035 1563 APS I MxP Mx+ 0.06 V NaN
1514 APS I “M” Res 0.001 X 0.035 1564 APS I MnP Mx+ 0.06 V NaN
1515 APS I “E” Res 0.001 X 0.035 1565 APS I 13 Mx+ 0.06 V NaN
1516 APS I MxS Res 0.001 X 0.035 1566 APS I 23 Mx+ 0.06 V NaN
1517 APS I 23 Res 0.001 X 0.035 1567 APS I MxS 0.06 V NaN
1518 APS I MnP Res 0.001 X 0.035 1568 APS I “M” 0.06 V NaN
1519 APS I MxP Res 0.001 X 0.035 1569 APS I 11 Mx+ 0.07 V NaN
1520 APS I 33 Res 0.001 X 0.035 1570 APS I 22 Mx+ 0.07 V NaN
1571 APS I 33 Mx+ 0.07 V NaN 1621 APS I 22 Mx− 0.06 V NaN
1572 APS I MxP Mx+ 0.07 V NaN 1622 APS I 33 Mx− 0.06 V NaN
1573 APS I MnP Mx+ 0.07 V NaN 1623 APS I MxP Mx− 0.06 V NaN
1574 APS I 13 Mx+ 0.07 V NaN 1624 APS I MnP Mx− 0.06 V NaN
1575 APS I 23 Mx+ 0.07 V NaN 1625 APS I 12 Mx− 0.06 V NaN
1576 APS I MxS 0.07 V NaN 1626 APS I 13 Mx− 0.06 V NaN
1577 APS I “M” 0.07 V NaN 1627 APS I 11 Mx− 0.07 V NaN
1578 APS I 11 Mx+ 0.08 V NaN 1628 APS I 22 Mx− 0.07 V NaN
1579 APS I 22 Mx+ 0.08 V NaN 1629 APS I 33 Mx− 0.07 V NaN
1580 APS I 33 Mx+ 0.08 V NaN 1630 APS I MxP Mx− 0.07 V NaN
1581 APS I MxP Mx+ 0.08 V NaN 1631 APS I MnP Mx− 0.07 V NaN
1582 APS I MnP Mx+ 0.08 V NaN 1632 APS I 12 Mx− 0.07 V NaN
1583 APS I 12 Mx+ 0.08 V NaN 1633 APS I 13 Mx− 0.07 V NaN
1584 APS I 13 Mx+ 0.08 V NaN 1634 APS I 11 Mx− 0.08 V NaN
1585 APS I 23 Mx+ 0.08 V NaN 1635 APS I 22 Mx− 0.08 V NaN
1586 APS I MxS 0.08 V NaN 1636 APS I 33 Mx− 0.08 V NaN
1587 APS I “M” 0.08 V NaN 1637 APS I MxP Mx− 0.08 V NaN
1588 APS I 11 Mx+ 0.09 V NaN 1638 APS I MnP Mx− 0.08 V NaN
1589 APS I 22 Mx+ 0.09 V NaN 1639 APS I 12 Mx− 0.08 V NaN
1590 APS I 33 Mx+ 0.09 V NaN 1640 APS I 13 Mx− 0.08 V NaN
1591 APS I MxP Mx+ 0.09 V NaN 1641 APS I 23 Mx− 0.08 V NaN
1592 APS I MnP Mx+ 0.09 V NaN 1642 APS I 11 Mx− 0.09 V NaN
1593 APS I 12 Mx+ 0.09 V NaN 1643 APS I 22 Mx− 0.09 V NaN
1594 APS I 13 Mx+ 0.09 V NaN 1644 APS I 33 Mx− 0.09 V NaN
1595 APS I 23 Mx+ 0.09 V NaN 1645 APS I MxP Mx− 0.09 V NaN
1596 APS I MxS 0.09 V NaN 1646 APS I MnP Mx− 0.09 V NaN
1597 APS I “E” 0.09 V NaN 1647 APS I 12 Mx− 0.09 V NaN
1598 APS I “M” 0.09 V NaN 1648 APS I 13 Mx− 0.09 V NaN
1599 APS I 12 Mx− 0.02 V NaN 1649 APS I 23 Mx− 0.09 V NaN
1600 APS I 13 Mx− 0.02 V NaN 1650 APS I 11 |M| 0.03 V NaN
1601 APS I 11 Mx− 0.03 V NaN 1651 APS I 22 |M| 0.03 V NaN
1602 APS I 22 Mx− 0.03 V NaN 1652 APS I 33 |M| 0.03 V NaN
1603 APS I 33 Mx− 0.03 V NaN 1653 APS I 13 |M| 0.03 V NaN
1604 APS I MxP Mx− 0.03 V NaN 1654 APS I 11 |M| 0.04 V NaN
1605 APS I 12 Mx− 0.03 V NaN 1655 APS I 22 |M| 0.04 V NaN
1606 APS I 13 Mx− 0.03 V NaN 1656 APS I 33 |M| 0.04 V NaN
1607 APS I 11 Mx− 0.04 V NaN 1657 APS I MxP |M| 0.04 V NaN
1608 APS I 22 Mx− 0.04 V NaN 1658 APS I 13 |M| 0.04 V NaN
1609 APS I 33 Mx− 0.04 V NaN 1659 APS I 11 |M| 0.05 V NaN
1610 APS I MxP Mx− 0.04 V NaN 1660 APS I 22 |M| 0.05 V NaN
1611 APS I 12 Mx− 0.04 V NaN 1661 APS I 33 |M| 0.05 V NaN
1612 APS I 13 Mx− 0.04 V NaN 1662 APS I MxP |M| 0.05 V NaN
1613 APS I 11 Mx− 0.05 V NaN 1663 APS I MnP |M| 0.05 V NaN
1614 APS I 22 Mx− 0.05 V NaN 1664 APS I 13 |M| 0.05 V NaN
1615 APS I 33 Mx− 0.05 V NaN 1665 APS I 11 |M| 0.06 V NaN
1616 APS I MxP Mx− 0.05 V NaN 1666 APS I 22 |M| 0.06 V NaN
1617 APS I MnP Mx− 0.05 V NaN 1667 APS I 33 |M| 0.06 V NaN
1618 APS I 12 Mx− 0.05 V NaN 1668 APS I MxP |M| 0.06 V NaN
1619 APS I 13 Mx− 0.05 V NaN 1669 APS I MnP |M| 0.06 V NaN
1620 APS I 11 Mx− 0.06 V NaN 1670 APS I 13 |M| 0.06 V NaN
1671 APS I 11 |M| 0.07 V NaN 1721 APS I 22 Res 0.03 V NaN
1672 APS I 22 |M| 0.07 V NaN 1722 APS I 33 Res 0.03 V NaN
1673 APS I 33 |M| 0.07 V NaN 1723 APS I MxP Res 0.03 V NaN
1674 APS I MxP |M| 0.07 V NaN 1724 APS I MnP Res 0.03 V NaN
1675 APS I MnP |M| 0.07 V NaN 1725 APS I 12 Res 0.03 V NaN
1676 APS I 13 |M| 0.07 V NaN 1726 APS I 13 Res 0.03 V NaN
1677 APS I 11 |M| 0.08 V NaN 1727 APS I 23 Res 0.03 V NaN
1678 APS I 22 |M| 0.08 V NaN 1728 APS I MxS Res 0.03 V NaN
1679 APS I 33 |M| 0.08 V NaN 1729 APS I 11 Res 0.04 V NaN
1680 APS I MxP |M| 0.08 V NaN 1730 APS I 22 Res 0.04 V NaN
1681 APS I MnP |M| 0.08 V NaN 1731 APS I 33 Res 0.04 V NaN
1682 APS I 12 |M| 0.08 V NaN 1732 APS I MxP Res 0.04 V NaN
1683 APS I 13 |M| 0.08 V NaN 1733 APS I MnP Res 0.04 V NaN
1684 APS I 23 |M| 0.08 V NaN 1734 APS I 12 Res 0.04 V NaN
1685 APS I 11 |M| 0.09 V NaN 1735 APS I 13 Res 0.04 V NaN
1686 APS I 22 |M| 0.09 V NaN 1736 APS I 23 Res 0.04 V NaN
1687 APS I 33 |M| 0.09 V NaN 1737 APS I MxS Res 0.04 V NaN
1688 APS I MxP |M| 0.09 V NaN 1738 APS I “E” Res 0.04 V NaN
1689 APS I MnP |M| 0.09 V NaN 1739 APS I “M” Res 0.04 V NaN
1690 APS I 12 |M| 0.09 V NaN 1740 APS I 11 Res 0.05 V NaN
1691 APS I 13 |M| 0.09 V NaN 1741 APS I 22 Res 0.05 V NaN
1692 APS I 23 |M| 0.09 V NaN 1742 APS I 33 Res 0.05 V NaN
1693 APS I 12 Res 0.0005 V NaN 1743 APS I MxP Res 0.05 V NaN
1694 APS I 13 Res 0.0005 V NaN 1744 APS I MnP Res 0.05 V NaN
1695 APS I 12 Res 0.001 V NaN 1745 APS I 12 Res 0.05 V NaN
1696 APS I 13 Res 0.001 V NaN 1746 APS I 13 Res 0.05 V NaN
1697 APS I 12 Res 0.002 V NaN 1747 APS I 23 Res 0.05 V NaN
1698 APS I 13 Res 0.002 V NaN 1748 APS I MxS Res 0.05 V NaN
1699 APS I 12 Res 0.003 V NaN 1749 APS I “E” Res 0.05 V NaN
1700 APS I 13 Res 0.003 V NaN 1750 APS I “M” Res 0.05 V NaN
1701 APS I 12 Res 0.004 V NaN 1751 APS I 11 Res 0.06 V NaN
1702 APS I 13 Res 0.004 V NaN 1752 APS I 22 Res 0.06 V NaN
1703 APS I 12 Res 0.005 V NaN 1753 APS I 33 Res 0.06 V NaN
1704 APS I 13 Res 0.005 V NaN 1754 APS I MxP Res 0.06 V NaN
1705 APS I 12 Res 0.006 V NaN 1755 APS I MnP Res 0.06 V NaN
1706 APS I 13 Res 0.006 V NaN 1756 APS I 12 Res 0.06 V NaN
1707 APS I 12 Res 0.007 V NaN 1757 APS I 13 Res 0.06 V NaN
1708 APS I 13 Res 0.007 V NaN 1758 APS I 23 Res 0.06 V NaN
1709 APS I 12 Res 0.008 V NaN 1759 APS I MxS Res 0.06 V NaN
1710 APS I 13 Res 0.008 V NaN 1760 APS I “E” Res 0.06 V NaN
1711 APS I 12 Res 0.009 V NaN 1761 APS I “M” Res 0.06 V NaN
1712 APS I 13 Res 0.009 V NaN 1762 APS I 11 Res 0.07 V NaN
1713 APS I 11 Res 0.01 V NaN 1763 APS I 22 Res 0.07 V NaN
1714 APS I 12 Res 0.01 V NaN 1764 APS I 33 Res 0.07 V NaN
1715 APS I 13 Res 0.01 V NaN 1765 APS I MxP Res 0.07 V NaN
1716 APS I 11 Res 0.02 V NaN 1766 APS I MnP Res 0.07 V NaN
1717 APS I 12 Res 0.02 V NaN 1767 APS I 12 Res 0.07 V NaN
1718 APS I 13 Res 0.02 V NaN 1768 APS I 13 Res 0.07 V NaN
1719 APS I 23 Res 0.02 V NaN 1769 APS I 23 Res 0.07 V NaN
1720 APS I 11 Res 0.03 V NaN 1770 APS I MxS Res 0.07 V NaN
1771 APS I “E” Res 0.07 V NaN 1821 APS I 22 Mx+ 0.06 X NaN
1772 APS I “M” Res 0.07 V NaN 1822 APS I 33 Mx+ 0.06 X NaN
1773 APS I 11 Res 0.08 V NaN 1823 APS I MxP Mx+ 0.06 X NaN
1774 APS I 22 Res 0.08 V NaN 1824 APS I MnP Mx+ 0.06 X NaN
1775 APS I 33 Res 0.08 V NaN 1825 APS I 13 Mx+ 0.06 X NaN
1776 APS I MxP Res 0.08 V NaN 1826 APS I 23 Mx+ 0.06 X NaN
1777 APS I MnP Res 0.08 V NaN 1827 APS I MxS 0.06 X NaN
1778 APS I 12 Res 0.08 V NaN 1828 APS I “M” 0.06 X NaN
1779 APS I 13 Res 0.08 V NaN 1829 APS I 11 Mx+ 0.07 X NaN
1780 APS I 23 Res 0.08 V NaN 1830 APS I 22 Mx+ 0.07 X NaN
1781 APS I MxS Res 0.08 V NaN 1831 APS I 33 Mx+ 0.07 X NaN
1782 APS I “E” Res 0.08 V NaN 1832 APS I MxP Mx+ 0.07 X NaN
1783 APS I “M” Res 0.08 V NaN 1833 APS I MnP Mx+ 0.07 X NaN
1784 APS I 11 Res 0.09 V NaN 1834 APS I 13 Mx+ 0.07 X NaN
1785 APS I 22 Res 0.09 V NaN 1835 APS I 23 Mx+ 0.07 X NaN
1786 APS I 33 Res 0.09 V NaN 1836 APS I MxS 0.07 X NaN
1787 APS I MxP Res 0.09 V NaN 1837 APS I “M” 0.07 X NaN
1788 APS I MnP Res 0.09 V NaN 1838 APS I 11 Mx+ 0.08 X NaN
1789 APS I 12 Res 0.09 V NaN 1839 APS I 22 Mx+ 0.08 X NaN
1790 APS I 13 Res 0.09 V NaN 1840 APS I 33 Mx+ 0.08 X NaN
1791 APS I 23 Res 0.09 V NaN 1841 APS I MxP Mx+ 0.08 X NaN
1792 APS I MxS Res 0.09 V NaN 1842 APS I MnP Mx+ 0.08 X NaN
1793 APS I “E” Res 0.09 V NaN 1843 APS I 12 Mx+ 0.08 X NaN
1794 APS I “M” Res 0.09 V NaN 1844 APS I 13 Mx+ 0.08 X NaN
1795 PS H 22 (−) X NaN 1845 APS I 23 Mx+ 0.08 X NaN
1796 PS H 13 (−) X NaN 1846 APS I MxS 0.08 X NaN
1797 APS I 11 Mx+ 0.02 X NaN 1847 APS I “M” 0.08 X NaN
1798 APS I 11 Mx+ 0.03 X NaN 1848 APS I 11 Mx+ 0.09 X NaN
1799 APS I 22 Mx+ 0.03 X NaN 1849 APS I 22 Mx+ 0.09 X NaN
1800 APS I 33 Mx+ 0.03 X NaN 1850 APS I 33 Mx+ 0.09 X NaN
1801 APS I MnP Mx+ 0.03 X NaN 1851 APS I MxP Mx+ 0.09 X NaN
1802 APS I 13 Mx+ 0.03 X NaN 1852 APS I MnP Mx+ 0.09 X NaN
1803 APS I 23 Mx+ 0.03 X NaN 1853 APS I 12 Mx+ 0.09 X NaN
1804 APS I 11 Mx+ 0.04 X NaN 1854 APS I 13 Mx+ 0.09 X NaN
1805 APS I 22 Mx+ 0.04 X NaN 1855 APS I 23 Mx+ 0.09 X NaN
1806 APS I 33 Mx+ 0.04 X NaN 1856 APS I MxS 0.09 X NaN
1807 APS I MxP Mx+ 0.04 X NaN 1857 APS I “E” 0.09 X NaN
1808 APS I MnP Mx+ 0.04 X NaN 1858 APS I “M” 0.09 X NaN
1809 APS I 13 Mx+ 0.04 X NaN 1859 APS I 12 Mx− 0.02 X NaN
1810 APS I 23 Mx+ 0.04 X NaN 1860 APS I 13 Mx− 0.02 X NaN
1811 APS I 11 Mx+ 0.05 X NaN 1861 APS I 11 Mx− 0.03 X NaN
1812 APS I 22 Mx+ 0.05 X NaN 1862 APS I 22 Mx− 0.03 X NaN
1813 APS I 33 Mx+ 0.05 X NaN 1863 APS I 33 Mx− 0.03 X NaN
1814 APS I MxP Mx+ 0.05 X NaN 1864 APS I MxP Mx− 0.03 X NaN
1815 APS I MnP Mx+ 0.05 X NaN 1865 APS I 12 Mx− 0.03 X NaN
1816 APS I 13 Mx+ 0.05 X NaN 1866 APS I 13 Mx− 0.03 X NaN
1817 APS I 23 Mx+ 0.05 X NaN 1867 APS I 11 Mx− 0.04 X NaN
1818 APS I MxS 0.05 X NaN 1868 APS I 22 Mx− 0.04 X NaN
1819 APS I “M” 0.05 X NaN 1869 APS I 33 Mx− 0.04 X NaN
1820 APS I 11 Mx+ 0.06 X NaN 1870 APS I MxP Mx− 0.04 X NaN
1871 APS I 12 Mx− 0.04 X NaN 1921 APS I 33 |M| 0.05 X NaN
1872 APS I 13 Mx− 0.04 X NaN 1922 APS I MxP |M| 0.05 X NaN
1873 APS I 11 Mx− 0.05 X NaN 1923 APS I MnP |M| 0.05 X NaN
1874 APS I 22 Mx− 0.05 X NaN 1924 APS I 13 |M| 0.05 X NaN
1875 APS I 33 Mx− 0.05 X NaN 1925 APS I 11 |M| 0.06 X NaN
1876 APS I MxP Mx− 0.05 X NaN 1926 APS I 22 |M| 0.06 X NaN
1877 APS I MnP Mx− 0.05 X NaN 1927 APS I 33 |M| 0.06 X NaN
1878 APS I 12 Mx− 0.05 X NaN 1928 APS I MxP |M| 0.06 X NaN
1879 APS I 13 Mx− 0.05 X NaN 1929 APS I MnP |M| 0.06 X NaN
1880 APS I 11 Mx− 0.06 X NaN 1930 APS I 13 |M| 0.06 X NaN
1881 APS I 22 Mx− 0.06 X NaN 1931 APS I 11 |M| 0.07 X NaN
1882 APS I 33 Mx− 0.06 X NaN 1932 APS I 22 |M| 0.07 X NaN
1883 APS I MxP Mx− 0.06 X NaN 1933 APS I 33 |M| 0.07 X NaN
1884 APS I MnP Mx− 0.06 X NaN 1934 APS I MxP |M| 0.07 X NaN
1885 APS I 12 Mx− 0.06 X NaN 1935 APS I MnP |M| 0.07 X NaN
1886 APS I 13 Mx− 0.06 X NaN 1936 APS I 13 |M| 0.07 X NaN
1887 APS I 11 Mx− 0.07 X NaN 1937 APS I 11 |M| 0.08 X NaN
1888 APS I 22 Mx− 0.07 X NaN 1938 APS I 22 |M| 0.08 X NaN
1889 APS I 33 Mx− 0.07 X NaN 1939 APS I 33 |M| 0.08 X NaN
1890 APS I MxP Mx− 0.07 X NaN 1940 APS I MxP |M| 0.08 X NaN
1891 APS I MnP Mx− 0.07 X NaN 1941 APS I MnP |M| 0.08 X NaN
1892 APS I 12 Mx− 0.07 X NaN 1942 APS I 12 |M| 0.08 X NaN
1893 APS I 13 Mx− 0.07 X NaN 1943 APS I 13 |M| 0.08 X NaN
1894 APS I 11 Mx− 0.08 X NaN 1944 APS I 23 |M| 0.08 X NaN
1895 APS I 22 Mx− 0.08 X NaN 1945 APS I 11 |M| 0.09 X NaN
1896 APS I 33 Mx− 0.08 X NaN 1946 APS I 22 |M| 0.09 X NaN
1897 APS I MxP Mx− 0.08 X NaN 1947 APS I 33 |M| 0.09 X NaN
1898 APS I MnP Mx− 0.08 X NaN 1948 APS I MxP |M| 0.09 X NaN
1899 APS I 12 Mx− 0.08 X NaN 1949 APS I MnP |M| 0.09 X NaN
1900 APS I 13 Mx− 0.08 X NaN 1950 APS I 12 |M| 0.09 X NaN
1901 APS I 23 Mx− 0.08 X NaN 1951 APS I 13 |M| 0.09 X NaN
1902 APS I 11 Mx− 0.09 X NaN 1952 APS I 23 |M| 0.09 X NaN
1903 APS I 22 Mx− 0.09 X NaN 1953 APS I 12 Res 0.0005 X NaN
1904 APS I 33 Mx− 0.09 X NaN 1954 APS I 13 Res 0.0005 X NaN
1905 APS I MxP Mx− 0.09 X NaN 1955 APS I 12 Res 0.001 X NaN
1906 APS I MnP Mx− 0.09 X NaN 1956 APS I 13 Res 0.001 X NaN
1907 APS I 12 Mx− 0.09 X NaN 1957 APS I 12 Res 0.002 X NaN
1908 APS I 13 Mx− 0.09 X NaN 1958 APS I 13 Res 0.002 X NaN
1909 APS I 23 Mx− 0.09 X NaN 1959 APS I 12 Res 0.003 X NaN
1910 APS I 11 |M| 0.03 X NaN 1960 APS I 13 Res 0.003 X NaN
1911 APS I 22 |M| 0.03 X NaN 1961 APS I 12 Res 0.004 X NaN
1912 APS I 33 |M| 0.03 X NaN 1962 APS I 13 Res 0.004 X NaN
1913 APS I 13 |M| 0.03 X NaN 1963 APS I 12 Res 0.005 X NaN
1914 APS I 11 |M| 0.04 X NaN 1964 APS I 13 Res 0.005 X NaN
1915 APS I 22 |M| 0.04 X NaN 1965 APS I 12 Res 0.006 X NaN
1916 APS I 33 |M| 0.04 X NaN 1966 APS I 13 Res 0.006 X NaN
1917 APS I MxP |M| 0.04 X NaN 1967 APS I 12 Res 0.007 X NaN
1918 APS I 13 |M| 0.04 X NaN 1968 APS I 13 Res 0.007 X NaN
1919 APS I 11 |M| 0.05 X NaN 1969 APS I 12 Res 0.008 X NaN
1920 APS I 22 |M| 0.05 X NaN 1970 APS I 13 Res 0.008 X NaN
Rank Stm TD Cmp Rgy Thrsh Mtl Q Rank Stm TD Cmp Rgy Thrsh Mtl Q
1971 APS I 12 Res 0.009 X NaN 2021 APS I “M” Res 0.06 X NaN
1972 APS I 13 Res 0.009 X NaN 2022 APS I 11 Res 0.07 X NaN
1973 APS I 11 Res 0.01 X NaN 2023 APS I 22 Res 0.07 X NaN
1974 APS I 12 Res 0.01 X NaN 2024 APS I 33 Res 0.07 X NaN
1975 APS I 13 Res 0.01 X NaN 2025 APS I MxP Res 0.07 X NaN
1976 APS I 11 Res 0.02 X NaN 2026 APS I MnP Res 0.07 X NaN
1977 APS I 12 Res 0.02 X NaN 2027 APS I 12 Res 0.07 X NaN
1978 APS I 13 Res 0.02 X NaN 2028 APS I 13 Res 0.07 X NaN
1979 APS I 23 Res 0.02 X NaN 2029 APS I 23 Res 0.07 X NaN
1980 APS I 11 Res 0.03 X NaN 2030 APS I MxS Res 0.07 X NaN
1981 APS I 22 Res 0.03 X NaN 2031 APS I “E” Res 0.07 X NaN
1982 APS I 33 Res 0.03 X NaN 2032 APS I “M” Res 0.07 X NaN
1983 APS I MxP Res 0.03 X NaN 2033 APS I 11 Res 0.08 X NaN
1984 APS I MnP Res 0.03 X NaN 2034 APS I 22 Res 0.08 X NaN
1985 APS I 12 Res 0.03 X NaN 2035 APS I 33 Res 0.08 X NaN
1986 APS I 13 Res 0.03 X NaN 2036 APS I MxP Res 0.08 X NaN
1987 APS I 23 Res 0.03 X NaN 2037 APS I MnP Res 0.08 X NaN
1988 APS I MxS Res 0.03 X NaN 2038 APS I 12 Res 0.08 X NaN
1989 APS I 11 Res 0.04 X NaN 2039 APS I 13 Res 0.08 X NaN
1990 APS I 22 Res 0.04 X NaN 2040 APS I 23 Res 0.08 X NaN
1991 APS I 33 Res 0.04 X NaN 2041 APS I MxS Res 0.08 X NaN
1992 APS I MxP Res 0.04 X NaN 2042 APS I “E” Res 0.08 X NaN
1993 APS I MnP Res 0.04 X NaN 2043 APS I “M” Res 0.08 X NaN
1994 APS I 12 Res 0.04 X NaN 2044 APS I 11 Res 0.09 X NaN
1995 APS I 13 Res 0.04 X NaN 2045 APS I 22 Res 0.09 X NaN
1996 APS I 23 Res 0.04 X NaN 2046 APS I 33 Res 0.09 X NaN
1997 APS I MxS Res 0.04 X NaN 2047 APS I MxP Res 0.09 X NaN
1998 APS I “E” Res 0.04 X NaN 2048 APS I MnP Res 0.09 X NaN
1999 APS I “M” Res 0.04 X NaN 2049 APS I 12 Res 0.09 X NaN
2000 APS I 11 Res 0.05 X NaN 2050 APS I 13 Res 0.09 X NaN
2001 APS I 22 Res 0.05 X NaN 2051 APS I 23 Res 0.09 X NaN
2002 APS I 33 Res 0.05 X NaN 2052 APS I MxS Res 0.09 X NaN
2003 APS I MxP Res 0.05 X NaN 2053 APS I “E” Res 0.09 X NaN
2004 APS I MnP Res 0.05 X NaN 2054 APS I “M” Res 0.09 X NaN
2005 APS I 12 Res 0.05 X NaN
2006 APS I 13 Res 0.05 X NaN
2007 APS I 23 Res 0.05 X NaN
2008 APS I MxS Res 0.05 X NaN
2009 APS I “E” Res 0.05 X NaN
2010 APS I “M” Res 0.05 X NaN
2011 APS I 11 Res 0.06 X NaN
2012 APS I 22 Res 0.06 X NaN
2013 APS I 33 Res 0.06 X NaN
2014 APS I MxP Res 0.06 X NaN
2015 APS I MnP Res 0.06 X NaN
2016 APS I 12 Res 0.06 X NaN
2017 APS I 13 Res 0.06 X NaN
2018 APS I 23 Res 0.06 X NaN
2019 APS I MxS Res 0.06 X NaN
2020 APS I “E” Res 0.06 X NaN

Acknowledgments

This research was supported by grants from the NIH (AR46601, AR47653). Technical assistance was provided by Dr. N. M. Grosland, Dr. S. L. Hillis, Mr. W. D. Lack, Dr. D. R. Pedersen, and Mr. K. J. Stewart.

Appendix A

Random/Fixed-Effects Statistical Regression Model M1 mean model with random subject effects:

yij=β0+sj+εij

yij is the outcome for the

jth subject (scratched plate) j = 1, 2, ..., n,

ith angle i = 1, 2, ..., t

  • n = 3 subjects/plates, t = 10 angles

  • N = nt = 3 · 10 = 30 total outcomes

  • sj (the subject effects) are normally distributed with mean 0 and variance σ2

  • εij (individual observation errors) are normally distributed with mean 0 and variance σ2

ANOVA table:

SOURCE SS df
subject SS(subj) tj=1n(y¯jy¯)2 n−1
error(residual) SS(error) i=1tj=1n(yijy¯j)2 Nn−1

SS(subj) – sum of squares due to subjects

SS(error) – sum of squares due to error (or residual)

Subscript y.j denotes the average of all angles i, for subject j

Subscript y.. denotes the average of all subjects across all the angles

From these compute:

MS(subj)=SS(subj)/(n1) and
MS(error)=SS(error)/[Nn].

The variance estimates are the following:

error variance=MS(error)
subject variance=[MS(subj)MS(error)]/n.

Note: if subject variance is negative, then it is set equal to 0.

M2 model with predictor and fixed subject effects:

yij=β0+β1xij+sj+εij

where yij, sj, and εij are the same as before, and

xij is the predicted value for the outcome yij obtained from the candidate surrogate.

  • Note that xij = xi (same prediction for each subject)

  • Same assumptions on subject and error terms as in M1.

Slope and intercept estimates β̂1 and β̂ 2, using standard formulas for simple linear regression, are:

β^1=SSxySSxx=i=1tj=1n(xijx¯)(yijy¯)i=1tj=1n(xijx¯)2=i=1tj=1nxijyijNxy¯i=1tj=1nxij2Nx¯2andβ^0=y¯β^1x¯

Alternatively, if applying MATLAB software, one can also use the matrix formula

β^=(XX)1XY where X contains a column vector of ones and a column vector with the x values (repeated three times end-to-end), X’ denotes the transpose of X, and Y is the outcome column vector of all three random subjects yi1, yi2, and yi3, listed end-to-end.

Then β^=[β^0β^1]

The predicted value, ŷij, for each angle on each plate, using fixed subject effects, is:

y^ij=β^0+β^1xij+s^j(where xij=xi)
  • we treat subjects as fixed

  • sj = ȳ.j − ȳ.. is the estimate for subject effect, treating subjects as fixed.

ANOVA table:

SOURCE SS df
subject SS(subj) tj=1n(y¯jy¯)2 n−1
error(residual) SS(error) i=1tj=1n(y¯ijy^ij)2 Nn

Then, with

MS(subj)=SS(subj)/(n1)and MS(error)=SS(error)/[Nn1],

the variance estimates are again:

error variance=MS(error) and subject variance =[MS(subj)MS(error)]/n.
ThenRsquaredis(var1Var2)/Var1=[(M1subjectvariance+M1residualvariance)(M2subjectvariance+M2residualvariance)]/(M1subjectvariance+M1residualvariance)

References

  • 1.Cooper JR, Dowson D, Fisher J. Macroscopic and microscopic wear mechanisms in ultra-high molecular weight polyethylene. Wear. 1993;162–64:378, 384. (Proceedings of the 9th International Conference on Wear of Materials, Apr 13–16 1993) [Google Scholar]
  • 2.Wang A, Polineni VK, Stark C, Dumbleton JH. Effect of femoral head surface roughness on the wear of ultrahigh molecular weight polyethylene acetabular cups. Journal of Arthroplasty. 1998;13:615, 20. doi: 10.1016/s0883-5403(98)80002-8. [DOI] [PubMed] [Google Scholar]
  • 3.McKellop H, Clarke IC, Markolf KL, Amstutz HC. Wear characteristics of UHMW polyethylene: a method for accurately measuring extremely low wear rates. Journal of Biomedical Materials Research. 1978;12:895, 927. doi: 10.1002/jbm.820120611. [DOI] [PubMed] [Google Scholar]
  • 4.Muratoglu OK, Burroughs BR, Christensen SD, Lozynsky A, Harris WH. In vitro knee simulator wear of highly crosslinked tibias articulating against explanted rough femoral components. Trans 50th Orth Res Soc. 2004:0297. doi: 10.1097/01.blo.0000143801.41885.8b. [DOI] [PubMed] [Google Scholar]
  • 5.Brown TD, Stewart KJ, Nieman JC, Pedersen DR, Callaghan JJ. Local head roughening as a factor contributing to variability of total hip wear: a finite element analysis. Journal of Biomechanical Engineering. 2002;124:691, 8. doi: 10.1115/1.1517275. [DOI] [PubMed] [Google Scholar]
  • 6.Schmalzried TP, Dorey F, McClung C, Scott D. The contribution of wear mechanism(s) to variability in wear rates. Trans 45th Orth Res Soc. 1999:0287. [Google Scholar]
  • 7.Goldsmith AA, Dowson D, Wroblewski BM, Siney PD, Fleming PA, Lane JM. The effect of activity levels of total hip arthroplasty patients on socket penetration. J Arthroplasty. 2001;16:620–7. doi: 10.1054/arth.2001.23566. [DOI] [PubMed] [Google Scholar]
  • 8.Elfick AP, Hall RM, Pinder IM, Unsworth A. The influence of femoral head surface roughness on the wear of ultrahigh molecular weight polyethylene sockets in cementless total hip replacement. Journal of Biomedical Materials Research. 1999;48:712, 8. doi: 10.1002/(sici)1097-4636(1999)48:5<712::aid-jbm17>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  • 9.Sychterz CJ, Engh CA, Jr, Swope SW, McNulty DE, Engh CA. Analysis of prosthetic femoral heads retrieved at autopsy. Clin Orthop. 1999;358:223–34. [PubMed] [Google Scholar]
  • 10.Elfick APD, Hall RM, Pinder IM, Unsworth A. The influence of femoral head surface roughness on the wear of ultrahigh molecular weight polyethylene sockets in cementless total hip replacement. J Biomed Mater Res. 1999;48:712–718. doi: 10.1002/(sici)1097-4636(1999)48:5<712::aid-jbm17>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  • 11.Jasty M, Bragdon CR, Lee K, Hanson A, Harris WH. Surface damage to cobalt-chrome femoral head prostheses. Journal of Bone & Joint Surgery - British Volume. 1994;76:73, 7. [PubMed] [Google Scholar]
  • 12.McKellop HA, Campbell P, Park SH, Schmalzried TP, Grigoris P, Amstutz HC, Sarmiento A. The origin of submicron polyethylene wear debris in total hip arthroplasty. Clinical Orthopaedics & Related Research. 1995;311:3–20. [PubMed] [Google Scholar]
  • 13.Atkinson JR, Dowson D, Isaac GH, Wroblewski BM. Laboratory wear tests and clinical observations of the penetration of femoral heads into acetabular cups in total replacement hip joints: II. A microscopical study of the surfaces of Charnley polyethylene acetabular sockets. Wear. 1985;104:225–244. [Google Scholar]
  • 14.Mirghany M, Jin ZM. Prediction of scratch resistance of cobalt chromium alloy bearing surface, articulating against ultra-high molecular weight polyethylene, due to third-body wear particles. Proceedings of the Institution of Mechanical Engineers. Part H - Journal of Engineering in Medicine. 2004;218:41, 50. doi: 10.1243/095441104322807749. [DOI] [PubMed] [Google Scholar]
  • 15.McNie CM, Barton DC, Ingham E, Tipper JL, Fisher J, Stone MH. Prediction of polyethylene wear rate and debris morphology produced by microscopic asperities on femoral heads. Journal of Materials Science: Materials in Medicine. 2000;11:163–174. doi: 10.1023/a:1008979608563. [DOI] [PubMed] [Google Scholar]
  • 16.Endo MM, Barbour PS, Barton DC, Fisher J, Tipper JL, Ingham E, Stone MH. Comparative wear and wear debris under three different counterface conditions of crosslinked and non-crosslinked ultra high molecular weight polyethylene. Bio-Medical Materials & Engineering. 2001;11:23–35. [PubMed] [Google Scholar]
  • 17.Minakawa H, Stone MH, Wroblewski BM, Lancaster JG, Ingham E, Fisher J. Quantification of third-body damage and its effect on UHMWPE wear with different types of femoral head. J Bone Joint Surg Br. 1998;80:894–9. doi: 10.1302/0301-620x.80b5.8675. [DOI] [PubMed] [Google Scholar]
  • 18.Fisher J, Firkins P, Reeves EA, Hailey JL, Isaac GH. The influence of scratches to metallic counterfaces on the wear of ultra-high molecular weight polyethylene. Proc Inst Mech Eng [H] 1995;209:263–4. doi: 10.1243/PIME_PROC_1995_209_353_02. [DOI] [PubMed] [Google Scholar]
  • 19.Dowson D. The role of counterface imperfections in the wear of polyethylene. Wear. 1987;119:277–293. [Google Scholar]
  • 20.Dharmastiti R, Barton DC, Fisher J, Edidin A, Kurtz S. The wear of orie nted UHMWPE under isotropically rough and scratched counterface test conditions. Bio-Medical Materials & Engineering. 2001;11:241, 56. [PubMed] [Google Scholar]
  • 21.Kamali A, Farrar R, Stone MH, Fisher J. The effects of scratched femoral components on UHMWPE wear in rotating platform mobile bearing TKR. Trans 7th World Congress Biomaterials 2004 [Google Scholar]
  • 22.Turell M, Wang A, Bellare A. Quantification of the effect of cross-path motion on the wear rate of ultra high molecular weight polyethylene. Wear. 2003;255:1034–1039. [Google Scholar]
  • 23.Maxian TA, Brown TD, Pedersen DR, Callaghan JJ. The Frank Stinchfield Award. 3-Dimensional sliding/contact computational simulation of total hip wear. Clin Orthop Relat Res. 1996 Dec;(333):41–50. [PubMed] [Google Scholar]
  • 24.Lundberg HJ, Stewart KJ, Callaghan JJ, Brown TD. Kinetically-critical sites of femoral head roughening for wear rate acceleration in total hip arthroplasty. Clin Orthop. 2005;(430):89, 93. doi: 10.1097/01.blo.0000150450.42829.b8. [DOI] [PubMed] [Google Scholar]
  • 25.Bennet AP, Wright TM, Li S. Global reference UHMWPE: characterization and comparison to conventional UHMWPE. Trans 42nd Orth Res Soc. 1996;21:472. [Google Scholar]
  • 26.Paul MC. Localized finite element analysis of orientation-specific scratch traverse across UHMWPE. Department of Biomedical Engineering, University of Iowa; 2004. M. S. Thesis. [Google Scholar]
  • 27.Cripton PA. Compressive characterization of ultra-high molecular weight polyethylene with applications to contact stress analysis of total knee replacements. Queen's University at Kingston; 1993. M. S. Thesis. [Google Scholar]
  • 28.Scifert CF, Brown TD, Pedersen DR, Callaghan JJ. A finite element analysis of factors influencing total hip dislocation. Clin Orthop. 1998 Oct;(355):152–62. doi: 10.1097/00003086-199810000-00016. [DOI] [PubMed] [Google Scholar]
  • 29.McNie C, Barton DC, Stone MH, Fisher J. Prediction of plastic strains in ultra-high molecular weight polyethylene due to microscopic asperity interactions during sliding wear. Proceedings of the Institution of Mechanical Engineers. Part H - Journal of Engineering in Medicine. 1998;212:49, 56. doi: 10.1243/0954411981533818. [DOI] [PubMed] [Google Scholar]
  • 30.Image Processing Toolbox User's Guide. Two–dimensional correlation coefficient between two matrices (Function reference corr2). 2004. The Mathworks, Inc., Natick, MA.
  • 31.Bragdon CR, O'Connor DO, Lowenstein JD, Jasty M, Biggs SA, Harris WH. A new pin-on-disk wear testing method for simulating wear of polyethylene on cobalt-chrome alloy in total hip arthroplasty. J Arthroplasty. 2001 Aug;16:658–65. doi: 10.1054/arth.2001.23718. [DOI] [PubMed] [Google Scholar]
  • 32.Elfick AP, Hall RM, Pinder IM, Unsworth A. Wear in retrieved acetabular components: effect of femoral head radius and patient parameters. J Arthroplasty. 1998 Apr;13(3):291–5. doi: 10.1016/s0883-5403(98)90174-7. [DOI] [PubMed] [Google Scholar]
  • 33.Wang A, Stark C, Dumbleton JH. Mechanistic and morphological origins of ultra-high molecular weight polyethylene wear debris in total joint replacement prostheses.[comment] Proceedings of the Institution of Mechanical Engineers. Part H - Journal of Engineering in Medicine. 1996;210:141, 55. doi: 10.1243/PIME_PROC_1996_210_407_02. [DOI] [PubMed] [Google Scholar]
  • 34.Wang A, Sun DC, Stark C, Dumbleton JH. Wear mechanisms of UHMWPE in total joint replacements. Wear. 1995;181–183:241, 249. (Proceedings of the 10th International Conference on Wear of Materials, Apr 9–13 1995) [Google Scholar]

RESOURCES