Skip to main content
Journal of the National Medical Association logoLink to Journal of the National Medical Association
. 2004 Mar;96(3):290–296.

Evaluation of decision rules for identifying low bone density in postmenopausal African-American women.

Lorraine Silver Wallace 1, Joyce E Ballard 1, David Holiday 1, Lori W Turner 1, Amy J Keenum 1, Cynthia M Pearman 1
PMCID: PMC2594895  PMID: 15040510

Abstract

OBJECTIVE: While African-American women tend to have greater bone mineral density (BMD) than caucasian women, they are still at risk of developing osteoporosis later in life. Clinical decision rules (i.e., algorithms) have been developed to assist clinicians identify women at greatest risk of low BMD. However, such tools have only been validated in caucasian and Asian populations. Accordingly, the objective of this study was to compare the performance of five clinical decision rules in identifying postmenopausal African-American women at greatest risk for low femoral BMD. METHODOLOGY: One hundred-seventy-four (n=174) postmenopausal African-American women completed a valid and reliable oral questionnaire to assess lifestyle characteristics, and completed height and weight measures. BMD at the femoral neck was measured via dual energy x-ray absorptiometry (DXA). We calculated sensitivity, specificity, positive predictive value, and negative predictive value for identifying African-American women with low BMD (T-Score < or = -2.0 SD) using five clinical decision rules: Age, Body Size, No Estrogen (ABONE), Osteoporosis Risk Assessment Instrument (ORAI), Osteoporosis Self-Assessment Tool (OST), Simple Calculated Osteoporosis Risk Estimation (SCORE), and body weight less than 70 kg. RESULTS: Approximately 30% of African-American women had low BMD, half of whom had osteoporosis (BMD T-Score < or = -2.5 SD). Sensitivity for identifying women with a low BMD (T-Score < or = -2.0 SD) ranged from 65.57-83.61%, while specificity ranged from 53.85-78.85%. Positive predictive values ranged from 80.95-87.91%, while negative predictive values ranged from 48.44-58.33%. CONCLUSION: Our data suggest that the clinical decision rules analyzed in this study have some usefulness for identifying postmenopausal African-American women with low BMD. However, there is a need to establish cut-points for these clinical decision rules in a larger, more diverse sample of African-American women.

Full text

PDF
290

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler Robert A., Tran Mongthuong T., Petkov Valentina I. Performance of the Osteoporosis Self-assessment Screening Tool for osteoporosis in American men. Mayo Clin Proc. 2003 Jun;78(6):723–727. doi: 10.4065/78.6.723. [DOI] [PubMed] [Google Scholar]
  2. Bohannon A. D. Osteoporosis and African American women. J Womens Health Gend Based Med. 1999 Jun;8(5):609–615. doi: 10.1089/jwh.1.1999.8.609. [DOI] [PubMed] [Google Scholar]
  3. Cadarette S. M., Jaglal S. B., Kreiger N., McIsaac W. J., Darlington G. A., Tu J. V. Development and validation of the Osteoporosis Risk Assessment Instrument to facilitate selection of women for bone densitometry. CMAJ. 2000 May 2;162(9):1289–1294. [PMC free article] [PubMed] [Google Scholar]
  4. Cadarette S. M., Jaglal S. B., Murray T. M., McIsaac W. J., Joseph L., Brown J. P., Canadian Multicentre Osteoporosis Study Evaluation of decision rules for referring women for bone densitometry by dual-energy x-ray absorptiometry. JAMA. 2001 Jul 4;286(1):57–63. doi: 10.1001/jama.286.1.57. [DOI] [PubMed] [Google Scholar]
  5. Cadarette S. M., Jaglal S. B., Murray T. M. Validation of the simple calculated osteoporosis risk estimation (SCORE) for patient selection for bone densitometry. Osteoporos Int. 1999;10(1):85–90. doi: 10.1007/s001980050199. [DOI] [PubMed] [Google Scholar]
  6. Finkelstein Joel S., Lee Mei-Ling T., Sowers MaryFran, Ettinger Bruce, Neer Robert M., Kelsey Jennifer L., Cauley Jane A., Huang Mei-Hua, Greendale Gail A. Ethnic variation in bone density in premenopausal and early perimenopausal women: effects of anthropometric and lifestyle factors. J Clin Endocrinol Metab. 2002 Jul;87(7):3057–3067. doi: 10.1210/jcem.87.7.8654. [DOI] [PubMed] [Google Scholar]
  7. Genant H. K., Faulkner K. G., Glüer C. C. Measurement of bone mineral density: current status. Am J Med. 1991 Nov 25;91(5B):49S–53S. doi: 10.1016/0002-9343(91)90248-v. [DOI] [PubMed] [Google Scholar]
  8. Geusens Piet, Hochberg Marc C., van der Voort Danny J. M., Pols Huibert, van der Klift Marjolein, Siris Ethel, Melton Mary E., Turpin Jennifer, Byrnes Christine, Ross Philip. Performance of risk indices for identifying low bone density in postmenopausal women. Mayo Clin Proc. 2002 Jul;77(7):629–637. doi: 10.4065/77.7.629. [DOI] [PubMed] [Google Scholar]
  9. Kessenich C. R. Osteoporosis and African-American women. Womens Health Issues. 2000 Nov-Dec;10(6):300–304. doi: 10.1016/s1049-3867(00)00065-7. [DOI] [PubMed] [Google Scholar]
  10. Koh L. K., Sedrine W. B., Torralba T. P., Kung A., Fujiwara S., Chan S. P., Huang Q. R., Rajatanavin R., Tsai K. S., Park H. M. A simple tool to identify asian women at increased risk of osteoporosis. Osteoporos Int. 2001;12(8):699–705. doi: 10.1007/s001980170070. [DOI] [PubMed] [Google Scholar]
  11. Kotzan J. A., Martin B. C., Reeves J. H., Wade W. The impact of race and fractures on mortality in a postmenopausal Medicaid population. Clin Ther. 1999 Nov;21(11):1988–2000. doi: 10.1016/S0149-2918(00)86744-2. [DOI] [PubMed] [Google Scholar]
  12. Linnan Laura A., Emmons Karen M., Abrams David B. Beauty and the beast: results of the Rhode Island smokefree shop initiative. Am J Public Health. 2002 Jan;92(1):27–28. doi: 10.2105/ajph.92.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Looker A. C., Johnston C. C., Jr, Wahner H. W., Dunn W. L., Calvo M. S., Harris T. B., Heyse S. P., Lindsay R. L. Prevalence of low femoral bone density in older U.S. women from NHANES III. J Bone Miner Res. 1995 May;10(5):796–802. doi: 10.1002/jbmr.5650100517. [DOI] [PubMed] [Google Scholar]
  14. Looker A. C., Wahner H. W., Dunn W. L., Calvo M. S., Harris T. B., Heyse S. P., Johnston C. C., Jr, Lindsay R. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int. 1998;8(5):468–489. doi: 10.1007/s001980050093. [DOI] [PubMed] [Google Scholar]
  15. Lydick E., Cook K., Turpin J., Melton M., Stine R., Byrnes C. Development and validation of a simple questionnaire to facilitate identification of women likely to have low bone density. Am J Manag Care. 1998 Jan;4(1):37–48. [PubMed] [Google Scholar]
  16. McGinn T. G., Guyatt G. H., Wyer P. C., Naylor C. D., Stiell I. G., Richardson W. S. Users' guides to the medical literature: XXII: how to use articles about clinical decision rules. Evidence-Based Medicine Working Group. JAMA. 2000 Jul 5;284(1):79–84. doi: 10.1001/jama.284.1.79. [DOI] [PubMed] [Google Scholar]
  17. Michaëlsson K., Bergström R., Mallmin H., Holmberg L., Wolk A., Ljunghall S. Screening for osteopenia and osteoporosis: selection by body composition. Osteoporos Int. 1996;6(2):120–126. doi: 10.1007/BF01623934. [DOI] [PubMed] [Google Scholar]
  18. Mudano Amy S., Casebeer Linda, Patino Fausto, Allison Jeroan J., Weissman Norman W., Kiefe Catarina I., Person Sharina, Gilbert Donna, Saag Kenneth G. Racial disparities in osteoporosis prevention in a managed care population. South Med J. 2003 May;96(5):445–451. doi: 10.1097/01.SMJ.0000053918.93363.B0. [DOI] [PubMed] [Google Scholar]
  19. Papa L. J., Weber B. E. Physician characteristics associated with the use of bone densitometry. J Gen Intern Med. 1997 Dec;12(12):781–783. doi: 10.1046/j.1525-1497.1997.07165.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Park H. M., Sedrine W. Ben, Reginster J-Y, Ross Philip D., OSTA Korean experience with the OSTA risk index for osteoporosis: a validation study. J Clin Densitom. 2003 Fall;6(3):247–250. doi: 10.1385/jcd:6:3:247. [DOI] [PubMed] [Google Scholar]
  21. Ray N. F., Chan J. K., Thamer M., Melton L. J., 3rd Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res. 1997 Jan;12(1):24–35. doi: 10.1359/jbmr.1997.12.1.24. [DOI] [PubMed] [Google Scholar]
  22. Wei Gina S., Jackson Jeffrey L., Herbers Jerome E., Jr Ethnic disparity in the treatment of women with established low bone mass. J Am Med Womens Assoc. 2003 Summer;58(3):173–177. [PubMed] [Google Scholar]
  23. Weinstein L., Ullery B. Identification of at-risk women for osteoporosis screening. Am J Obstet Gynecol. 2000 Sep;183(3):547–549. doi: 10.1067/mob.2000.106594. [DOI] [PubMed] [Google Scholar]

Articles from Journal of the National Medical Association are provided here courtesy of National Medical Association

RESOURCES