Skip to main content
The Yale Journal of Biology and Medicine logoLink to The Yale Journal of Biology and Medicine
. 1978 Nov-Dec;51(6):625–633.

Deranged Tyrosine Metabolism in Cirrhosis

J Timothy Fulenwider, Bernard M Nordlinger, Bajhat A Faraj, George L Ivey, Daniel Rudman
PMCID: PMC2595599  PMID: 36717

Abstract

In normal individuals, the main route for tyrosine degradation is the hepatic pathway tyrosine→4-hydroxyphenylpyruvic acid→homogentisic acid→CO2. Quantitatively minor pathways, in large part extrahepatic, are: tyrosine→tyramine→octopamine and tyrosine→dopa→catecholamines.

In cirrhosis, the main hepatic pathway is blocked to varying degrees at the first three stages. This appears to be due to lack of activity of the enzymes tyrosine transaminase, PHPA oxidase, and HGA oxidase, the first step being rate limiting. Hypertyrosinemia and tyrosine intolerance result.

With the main hepatic pathway partially blocked, an abnormally large amount of tyrosine passes into the normally minor extrahepatic pathway leading to the false neurotransmitters tyramine and octopamine. Overproduction of these amines ensues and they accumulate in the body fluid.

The false neurotransmitters can displace catecholamines from their storage sites in the peripheral and central nervous system, and thereby disrupt adrenergic processes in arterioles, kidneys, and brain. Their accumulation in cirrhotic patients may play a role in the pathogenesis of hepatic encephalopathy, hepatorenal syndrome, and hyperdynamic circulation.

Full text

PDF
625

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asatoor A. M. The origin of urinary tyramine. Formation in tissue and by intestinal microorganisms. Clin Chim Acta. 1968 Oct;22(2):223–229. doi: 10.1016/0009-8981(68)90362-8. [DOI] [PubMed] [Google Scholar]
  2. BABER M. D. A case of congenital cirrhosis of the liver with renal tubular defects akin to those in the Fanconi syndrome. Arch Dis Child. 1956 Oct;31(159):335–339. doi: 10.1136/adc.31.159.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhansali K. G., Lach J. L., Clifton J. A. MAO activity in normal, cirrhotic, and noncirrhotic abnormal human liver. J Pharm Sci. 1971 Apr;60(4):611–613. doi: 10.1002/jps.2600600424. [DOI] [PubMed] [Google Scholar]
  4. Broadus A. E., Kaminsky N. I., Hardman J. G., Sutherland E. W., Liddle G. W. Kinetic parameters and renal clearances of plasma adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate in man. J Clin Invest. 1970 Dec;49(12):2222–2236. doi: 10.1172/JCI106441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CACHIN M., DURLACH J., BLASS J. Les acides aminés du sérum sanguin en pathologie hépatique. Sem Hop. 1952 Oct 30;28(80):3231–3238. [PubMed] [Google Scholar]
  6. David J. C., Dairman W., Udenfriend S. Decarboxylation to tyramine: a major route of tyrosine metabolism in mammals. Proc Natl Acad Sci U S A. 1974 May;71(5):1771–1775. doi: 10.1073/pnas.71.5.1771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. David J. C., Dairman W., Udenfriend S. On the importance of decarboxylation in the metabolism of phenylalanine, tyrosine, and tryptophan. Arch Biochem Biophys. 1974 Feb;160(2):561–568. doi: 10.1016/0003-9861(74)90432-9. [DOI] [PubMed] [Google Scholar]
  8. Dodsworth J. M., James J. H., Cummings M. C., Fischer J. F. Depletion of brain norepinephrine in acute hepatic coma. Surgery. 1974 Jun;75(6):811–820. [PubMed] [Google Scholar]
  9. Faraj B. A., Bowen P. A., Isaacs J. W., Rudman D. Hypertyraminemia in cirrhotic patients. N Engl J Med. 1976 Jun 17;294(25):1360–1364. doi: 10.1056/NEJM197606172942502. [DOI] [PubMed] [Google Scholar]
  10. Faraj B. A., Dayton P. G., Camp V. M., Wilson J. P., Malveaux E. F., Schlant R. C. Studies of the fate of tyramine in dogs: the effect of monoamine oxidase inhibition, portafemoral shunt and coronary artery ligation on the kinetics of tyramine. J Pharmacol Exp Ther. 1977 Feb;200(2):384–393. [PubMed] [Google Scholar]
  11. Faraj B. A., Mu J. Y., Lewis M. S., Wilson J. P., Israili Z. H., Dayton P. G. Determination of plasma and tissue levels of tyramine by radioimmunoassay. Proc Soc Exp Biol Med. 1975 Jul;149(3):664–669. doi: 10.3181/00379727-149-38875. [DOI] [PubMed] [Google Scholar]
  12. Fischer J. E., Baldessarini R. J. False neurotransmitters and hepatic failure. Lancet. 1971 Jul 10;2(7715):75–80. doi: 10.1016/s0140-6736(71)92048-4. [DOI] [PubMed] [Google Scholar]
  13. Fischer J. E. False neurotransmitters and hepatic coma. Res Publ Assoc Res Nerv Ment Dis. 1974;53:53–73. [PubMed] [Google Scholar]
  14. Fischer J. E., Funovics J. M., Aguirre A., James J. H., Keane J. M., Wesdorp R. I., Yoshimura N., Westman T. The role of plasma amino acids in hepatic encephalopathy. Surgery. 1975 Sep;78(3):276–290. [PubMed] [Google Scholar]
  15. Greenblatt D. J., Koch-Weser J. Clinical pharmacokinetics (second of two parts). N Engl J Med. 1975 Nov 6;293(19):964–970. doi: 10.1056/NEJM197511062931905. [DOI] [PubMed] [Google Scholar]
  16. IBER F. L., ROSEN H., LEVENSON S. M., CHALMERS T. C. The plasma amino acids in patients with liver failure. J Lab Clin Med. 1957 Sep;50(3):417–425. [PubMed] [Google Scholar]
  17. JERVIS G. A. Phenylpyruvic oligophrenia deficiency of phenylalanine-oxidizing system. Proc Soc Exp Biol Med. 1953 Mar;82(3):514–515. [PubMed] [Google Scholar]
  18. LA DU B. N., ZANNONI V. G., LASTER L., SEEGMILLER J. E. The nature of the defect in tyrosine metabolism in alcaptonuria. J Biol Chem. 1958 Jan;230(1):251–260. [PubMed] [Google Scholar]
  19. Lam K. C., Tall A. R., Goldstein G. B., Mistilis S. P. Role of a false neurotransmitter, octopamine, in the pathogenesis of hepatic and renal encephalopathy. Scand J Gastroenterol. 1973;8(6):465–472. [PubMed] [Google Scholar]
  20. Levine R. J., Conn H. O. Tyrosine metabolism in patients with liver disease. J Clin Invest. 1967 Dec;46(12):2012–2020. doi: 10.1172/JCI105690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Manghani K. K., Lunzer M. R., Billing B. H., Sherlock S. Urinary and serum octopamine in patients with portal-systemic encephalopathy. Lancet. 1975 Nov 15;2(7942):943–946. doi: 10.1016/s0140-6736(75)90359-1. [DOI] [PubMed] [Google Scholar]
  22. Marley E., Blackwell B. Interactions of monoamine oxidase inhibitors, amines, and foodstuffs. Adv Pharmacol Chemother. 1970;8:185–349. doi: 10.1016/s1054-3589(08)60597-9. [DOI] [PubMed] [Google Scholar]
  23. Medes G. A new error of tyrosine metabolism: tyrosinosis. The intermediary metabolism of tyrosine and phenylalanine. Biochem J. 1932;26(4):917–940. doi: 10.1042/bj0260917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Perry T. L., Hestrin M., MacDougall L., Hansen S. Urinary amines of intestinal bacterial origin. Clin Chim Acta. 1966 Jul;14(1):116–123. doi: 10.1016/0009-8981(66)90073-8. [DOI] [PubMed] [Google Scholar]
  25. Tacker M., Creaven P. J., McIsaac W. M. Preliminary observations on the metabolism of (1- 14 C)tyramine in man. J Pharm Pharmacol. 1972 Mar;24(3):247–249. doi: 10.1111/j.2042-7158.1972.tb08974.x. [DOI] [PubMed] [Google Scholar]
  26. WU C., BOLLMAN J. L., BUTT H. R. Changes in free amino acids in the plasma during hepatic coma. J Clin Invest. 1955 Jun;34(6):845–849. doi: 10.1172/JCI103139. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Yale Journal of Biology and Medicine are provided here courtesy of Yale Journal of Biology and Medicine

RESOURCES