Abstract
Glutamate dehydrogenase (NAD) activity was measured in liver and diaphragm mitochondria from 48 h fasted rats. Kinetic studies were performed with diaphragm enzyme and the effects of L-leu, ADP and L-ala on the K1m and V1max for NH4+, and α-ketoglutarate were evaluated. L-leucine increases by 2-8 fold the V1max for all three substrates with no significant changes in the K1m. ADP increased by 3-7 fold the V1max for all three substrates and the K1m for NADH and α-ketoglutarate by 1.5-7.0 fold. L-alanine had no effect on either the V1max or the K1m of any substrate. The results suggest that muscle has the capacity to form glutamate through the glutamate dehydrogenase reaction and that L-leucine may stimulate this reaction in muscle.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adibi S. A., Modesto T. A., Morse E. L., Amin P. M. Amino acid levels in plasma, liver, and skeletal muscle during protein deprivation. Am J Physiol. 1973 Aug;225(2):408–414. doi: 10.1152/ajplegacy.1973.225.2.408. [DOI] [PubMed] [Google Scholar]
- Ahlborg G., Felig P., Hagenfeldt L., Hendler R., Wahren J. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J Clin Invest. 1974 Apr;53(4):1080–1090. doi: 10.1172/JCI107645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brdiczka D., Pette D., Brunner G., Miller F. Kompartimentierte Verteilung von Enzymen in Rattenlebermitochondrien. Eur J Biochem. 1968 Jul;5(2):294–304. doi: 10.1111/j.1432-1033.1968.tb00370.x. [DOI] [PubMed] [Google Scholar]
- Bullock G., Carter E. E., White A. M. The preparation of mitochondria from muscle without the use of a homogeniser. FEBS Lett. 1970 May 25;8(2):109–111. doi: 10.1016/0014-5793(70)80237-x. [DOI] [PubMed] [Google Scholar]
- Burt C. T., Glonek T., Bárány M. Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance. J Biol Chem. 1976 May 10;251(9):2584–2591. [PubMed] [Google Scholar]
- Buse M. G., Biggers J. F., Drier C., Buse J. F. The effect of epinephrine, glucagon, and the nutritional state on the oxidation of branched chain amino acids and pyruvate by isolated hearts and diaphragms of the rat. J Biol Chem. 1973 Jan 25;248(2):697–706. [PubMed] [Google Scholar]
- Bárány M., Bárány K., Burt C. T., Glonek T., Myers T. C. Structural changes in myosin during contraction and the state of ATP in the intact frog muscle. J Supramol Struct. 1975;3(2):125–140. doi: 10.1002/jss.400030205. [DOI] [PubMed] [Google Scholar]
- CARLSTEN A., HALLGREN B., JAGENBURG R., SVANBORG A., WERKO L. Myocardial metabolism of glucose, lactic acid, amino acids and fatty acids in healthy human individuals at rest and at different work loads. Scand J Clin Lab Invest. 1961;13:418–428. [PubMed] [Google Scholar]
- Elwyn D. H., Parikh H. C., Shoemaker W. C. Amino acid movements between gut, liver, and periphery in unanesthetized dogs. Am J Physiol. 1968 Nov;215(5):1260–1275. doi: 10.1152/ajplegacy.1968.215.5.1260. [DOI] [PubMed] [Google Scholar]
- Engel P. C., Chen S. S. A product-inhibition study of bovine liver glutamate dehydrogenase. Biochem J. 1975 Nov;151(2):305–318. doi: 10.1042/bj1510305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felig P., Pozefsky T., Marliss E., Cahill G. F., Jr Alanine: key role in gluconeogenesis. Science. 1970 Feb 13;167(3920):1003–1004. doi: 10.1126/science.167.3920.1003. [DOI] [PubMed] [Google Scholar]
- Felig P. The glucose-alanine cycle. Metabolism. 1973 Feb;22(2):179–207. doi: 10.1016/0026-0495(73)90269-2. [DOI] [PubMed] [Google Scholar]
- Felig P., Wahren J. Amino acid metabolism in exercising man. J Clin Invest. 1971 Dec;50(12):2703–2714. doi: 10.1172/JCI106771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ichihara A., Koyama E. Transaminase of branched chain amino acids. I. Branched chain amino acids-alpha-ketoglutarate transaminase. J Biochem. 1966 Feb;59(2):160–169. doi: 10.1093/oxfordjournals.jbchem.a128277. [DOI] [PubMed] [Google Scholar]
- King K. S., Frieden C. The purification and physical properties of glutamate dehydrogenase from rat liver. J Biol Chem. 1970 Sep 10;245(17):4391–4396. [PubMed] [Google Scholar]
- Krebs H. A. The role of chemical equilibria in organ function. Adv Enzyme Regul. 1975;13:449–472. doi: 10.1016/0065-2571(75)90030-8. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levin B., Oberholzer V. G., Sinclair L. Biochemical investigations of hyperammonaemia. Lancet. 1969 Jul 26;2(7613):170–174. doi: 10.1016/s0140-6736(69)91419-6. [DOI] [PubMed] [Google Scholar]
- Lowenstein J. M. Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol Rev. 1972 Apr;52(2):382–414. doi: 10.1152/physrev.1972.52.2.382. [DOI] [PubMed] [Google Scholar]
- Malmquist J., Jagenburg R., Lindstedt G. Familial protein intolerance. Possible nature of enzyme defect. N Engl J Med. 1971 May 6;284(18):997–1002. doi: 10.1056/NEJM197105062841802. [DOI] [PubMed] [Google Scholar]
- Matlib M. A., O'Brien P. J. Compartmentation of enzymes in the rat liver mitochondrial matrix. Arch Biochem Biophys. 1975 Mar;167(1):193–202. doi: 10.1016/0003-9861(75)90456-7. [DOI] [PubMed] [Google Scholar]
- McGivan J. D., Bradford N. M., Crompton M., Chappell J. B. Effect of L-leucine on the nitrogen metabolism of isolated rat liver mitochondria. Biochem J. 1973 May;134(1):209–215. doi: 10.1042/bj1340209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohyuddin F., Rathbun J. C., McMurray W. C. Studies on amino acid metabolism in citrullinuria. Am J Dis Child. 1967 Jan;113(1):152–156. doi: 10.1001/archpedi.1967.02090160202033. [DOI] [PubMed] [Google Scholar]
- Odessey R., Khairallah E. A., Goldberg A. L. Origin and possible significance of alanine production by skeletal muscle. J Biol Chem. 1974 Dec 10;249(23):7623–7629. [PubMed] [Google Scholar]
- Palaiologos G., Felig P. Effects of ketone bodies on amino acid metabolism in isolated rat diaphragm. Biochem J. 1976 Mar 15;154(3):709–716. doi: 10.1042/bj1540709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pozefsky T., Felig P., Tobin J. D., Soeldner J. S., Cahill G. F., Jr Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J Clin Invest. 1969 Dec;48(12):2273–2282. doi: 10.1172/JCI106193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruderman N. B., Berger M. The formation of glutamine and alanine in skeletal muscle. J Biol Chem. 1974 Sep 10;249(17):5500–5506. [PubMed] [Google Scholar]
- Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shih V. E., Efron M. L., Moser H. W. Hyperornithinemia, hyperammonemia, and homocitrullinuria. A new disorder of amino acid metabolism associated with myoclonic seizures and mental retardation. Am J Dis Child. 1969 Jan;117(1):83–92. [PubMed] [Google Scholar]
- WERGEDAL J. E., HARPER A. E. METABOLIC ADAPTATIONS IN HIGHER ANIMALS. 10. GLUTAMIC DEHYDROGENASE ACTIVITY OF RATS CONSUMING HIGH PROTEIN DIETS. Proc Soc Exp Biol Med. 1964 Jul;116:600–604. doi: 10.3181/00379727-116-29316. [DOI] [PubMed] [Google Scholar]
- Wahren J., Felig P., Hagenfeldt L. Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J Clin Invest. 1976 Apr;57(4):987–999. doi: 10.1172/JCI108375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter P., Anabitarte M. On the use of glutamate dehydrogenase as a mitochondrial marker enzyme for the determination of the intracellular distribution of rat liver pyruvate carboxylase. FEBS Lett. 1971 Jan 30;12(5):289–292. doi: 10.1016/0014-5793(71)80201-6. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]