Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1988 Nov;56(11):2876–2883. doi: 10.1128/iai.56.11.2876-2883.1988

Effect of Mycobacterium tuberculosis-derived sulfolipid I on human phagocytic cells.

L Zhang 1, M B Goren 1, T J Holzer 1, B R Andersen 1
PMCID: PMC259665  PMID: 2844675

Abstract

Experiments were performed to determine the effects of Mycobacterium tuberculosis-derived sulfolipid I on phagocytic cells. Sulfolipid I was taken up in significant amounts by human neutrophils and in lesser amounts by monocytes and lymphocytes. Superoxide (O2-) production by neutrophils was significantly increased by sulfolipid I, but the rate of production was slower than that reported previously for other stimuli. The optimal concentration of sulfolipid I for stimulation of O2- production was 27 micrograms/ml, while higher concentrations produced less. At substimulatory levels sulfolipid I caused enhancement of O2- release from neutrophils when it was subsequently stimulated by other agents. Nonadherent monocytes from most normal donors failed to produce O2- when treated with sulfolipid I; however, adherent monocytes pretreated with gamma interferon did produce O2- with sulfolipid I stimulation. Priming for an enhanced oxidative response of activated monocytes was also observed. These sulfolipid I-induced changes in phagocytic cell function may be important in altering the ability of phagocytes to respond effectively to M. tuberculosis and may also cause exaggerated inflammatory responses.

Full text

PDF
2876

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLOCH H. Studies on the virulence of tubercle bacilli; isolation and biological properties of a constituent of virulent organisms. J Exp Med. 1950 Feb;91(2):197-218, pl. doi: 10.1084/jem.91.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown A. E., Holzer T. J., Andersen B. R. Capacity of human neutrophils to kill Mycobacterium tuberculosis. J Infect Dis. 1987 Dec;156(6):985–989. doi: 10.1093/infdis/156.6.985. [DOI] [PubMed] [Google Scholar]
  3. Chiu K. M., McPherson L. H., Harris J. E., Braun D. P. The separation of cytotoxic human peripheral blood monocytes into high and low phagocytic subsets by centrifugal elutriation. J Leukoc Biol. 1984 Dec;36(6):729–737. doi: 10.1002/jlb.36.6.729. [DOI] [PubMed] [Google Scholar]
  4. Cohen H. J., Chovaniec M. E. Superoxide generation by digitonin-stimulated guinea pig granulocytes. A basis for a continuous assay for monitoring superoxide production and for the study of the activation of the generating system. J Clin Invest. 1978 Apr;61(4):1081–1087. doi: 10.1172/JCI109007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Douvas G. S., Berger E. M., Repine J. E., Crowle A. J. Natural mycobacteriostatic activity in human monocyte-derived adherent cells. Am Rev Respir Dis. 1986 Jul;134(1):44–48. doi: 10.1164/arrd.1986.134.1.44. [DOI] [PubMed] [Google Scholar]
  6. Douvas G. S., Looker D. L., Vatter A. E., Crowle A. J. Gamma interferon activates human macrophages to become tumoricidal and leishmanicidal but enhances replication of macrophage-associated mycobacteria. Infect Immun. 1985 Oct;50(1):1–8. doi: 10.1128/iai.50.1.1-8.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. English D., Roloff J. S., Lukens J. N. Chemotactic factor enhancement of superoxide release from fluoride and phorbol myristate acetate stimulated neutrophils. Blood. 1981 Jul;58(1):129–134. [PubMed] [Google Scholar]
  8. GANGADHARAM P. R., COHN M. L., DAVIS C. L., MIDDLEBROOK G. Infectivity and pathogenicity of Indian and British strains of tubercle bacilli studied by aerogenic infection of guinea pigs. Am Rev Respir Dis. 1963 Feb;87:200–205. doi: 10.1164/arrd.1963.87.2.200. [DOI] [PubMed] [Google Scholar]
  9. Goren M. B., Brokl O., Schaefer W. B. Lipids of putative relevance to virulence in Mycobacterium tuberculosis: correlation of virulence with elaboration of sulfatides and strongly acidic lipids. Infect Immun. 1974 Jan;9(1):142–149. doi: 10.1128/iai.9.1.142-149.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goren M. B., D'Arcy Hart P., Young M. R., Armstrong J. A. Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2510–2514. doi: 10.1073/pnas.73.7.2510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goren M. B., Grange J. M., Aber V. R., Allen B. W., Mitchison D. A. Role of lipid content and hydrogen peroxide susceptibility in determining the guinea-pig virulence of Mycobacterium tuberculosis. Br J Exp Pathol. 1982 Dec;63(6):693–700. [PMC free article] [PubMed] [Google Scholar]
  12. Goren M. B. Sulfolipid I of Mycobacterium tuberculosis, strain H37Rv. I. Purification and properties. Biochim Biophys Acta. 1970 Jun 9;210(1):116–126. doi: 10.1016/0005-2760(70)90067-6. [DOI] [PubMed] [Google Scholar]
  13. Goren M. B., Vatter A. E., Fiscus J. Polyanionic agents do not inhibit phagosome-lysosome fusion in cultured macrophages. J Leukoc Biol. 1987 Feb;41(2):122–129. doi: 10.1002/jlb.41.2.122. [DOI] [PubMed] [Google Scholar]
  14. Grange J. M., Aber V. R., Allen B. W., Mitchison D. A., Goren M. B. The correlation of bacteriophage types of Mycobacterium tuberculosis with guinea-pig virulence and in vitro-indicators of virulence. J Gen Microbiol. 1978 Sep;108(1):1–7. doi: 10.1099/00221287-108-1-1. [DOI] [PubMed] [Google Scholar]
  15. Guthrie L. A., McPhail L. C., Henson P. M., Johnston R. B., Jr Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J Exp Med. 1984 Dec 1;160(6):1656–1671. doi: 10.1084/jem.160.6.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Helfman D. M., Appelbaum B. D., Vogler W. R., Kuo J. F. Phospholipid-sensitive Ca2+-dependent protein kinase and its substrates in human neutrophils. Biochem Biophys Res Commun. 1983 Mar 29;111(3):847–853. doi: 10.1016/0006-291x(83)91376-1. [DOI] [PubMed] [Google Scholar]
  17. Holzer T. J., Nelson K. E., Crispen R. G., Andersen B. R. Mycobacterium leprae fails to stimulate phagocytic cell superoxide anion generation. Infect Immun. 1986 Feb;51(2):514–520. doi: 10.1128/iai.51.2.514-520.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones H. P., Ghai G., Petrone W. F., McCord J. M. Calmodulin-dependent stimulation of the NADPH oxidase of human neutrophils. Biochim Biophys Acta. 1982 Jan 12;714(1):152–156. doi: 10.1016/0304-4165(82)90137-4. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lehmeyer J. E., Snyderman R., Johnston R. B., Jr Stimulation of neutrophil oxidative metabolism by chemotactic peptides: influence of calcium ion concentration and cytochalasin B and comparison with stimulation by phorbol myristate acetate. Blood. 1979 Jul;54(1):35–45. [PubMed] [Google Scholar]
  21. Lowrie D. B., Jackett P. S., Andrew P. W. Activation of macrophages for antimycobacterial activity. Immunol Lett. 1985;11(3-4):195–203. doi: 10.1016/0165-2478(85)90168-3. [DOI] [PubMed] [Google Scholar]
  22. Middlebrook G., Coleman C. M., Schaefer W. B. SULFOLIPID FROM VIRULENT TUBERCLE BACILLI. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1801–1804. doi: 10.1073/pnas.45.12.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Molski T. F., Naccache P. H., Borgeat P., Sha'afi R. I. Similarities in the mechanisms by which formyl-methionyl-leucyl-phenylalanine, arachidonic acid and leukotriene B4 increase calcium and sodium influxes in rabbit neutrophils. Biochem Biophys Res Commun. 1981 Nov 16;103(1):227–232. doi: 10.1016/0006-291x(81)91683-1. [DOI] [PubMed] [Google Scholar]
  24. O'Donnell R. T., Andersen B. R. Isolation of canine neutrophil plasma membranes. J Leukoc Biol. 1985 Sep;38(3):353–368. doi: 10.1002/jlb.38.3.353. [DOI] [PubMed] [Google Scholar]
  25. Pabst M. J., Gross J. M., Brozna J. P., Goren M. B. Inhibition of macrophage priming by sulfatide from Mycobacterium tuberculosis. J Immunol. 1988 Jan 15;140(2):634–640. [PubMed] [Google Scholar]
  26. Pick E., Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods. 1981;46(2):211–226. doi: 10.1016/0022-1759(81)90138-1. [DOI] [PubMed] [Google Scholar]
  27. Rook G. A., Steele J., Ainsworth M., Champion B. R. Activation of macrophages to inhibit proliferation of Mycobacterium tuberculosis: comparison of the effects of recombinant gamma-interferon on human monocytes and murine peritoneal macrophages. Immunology. 1986 Nov;59(3):333–338. [PMC free article] [PubMed] [Google Scholar]
  28. Smolen J. E., Korchak H. M., Weissmann G. The roles of extracellular and intracellular calcium in lysosomal enzyme release and superoxide anion generation by human neutrophils. Biochim Biophys Acta. 1981 Nov 5;677(3-4):512–520. doi: 10.1016/0304-4165(81)90267-1. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES