Abstract
Fibronectin (FN)-binding antigens are prominent components of short-term culture supernatants of Mycobacterium tuberculosis. In 3-day-old supernatants, a 30-kilodalton (kDa) protein was identified as the major FN-binding molecule. In 21-day-old supernatants, FN bound to a double protein band of 30 and 31 kDa, as well as to a group of antigens of larger molecular mass (57 to 60 kDa). FN-binding molecules in this size range, but not of 30 to 31 kDa, were also found in sonicates. We showed that the 31- and 30-kDa FN-binding bands correspond to components A and B of the BCG85 complex, previously shown to be abundant in culture supernatants of Mycobacterium bovis BCG. Thus, a polyclonal antibody to the BCG85 complex bound to the 30- and 31-kDa antigens and inhibited binding of FN to them on immunoblots of the culture filtrates. Similarly, FN bound to the purified components of the BCG85 complex, and this binding was blocked by the antibody. A monoclonal antibody, HYT27, also bound both to the BCG85 components A and B and to the 30- and 31-kDa FN-binding molecules of M. tuberculosis, but it did not block the binding of FN. Related molecules appear to be present on the surface of BCG and to mediate the binding of BCG to FN-coated plastic surfaces, since this binding could also be blocked by the polyclonal anti-BCG85 antibody and by the purified components of BCG85, particularly component A, but not by monoclonal antibody HYT27. The binding of these mycobacterial antigens to FN appears to be of very high affinity, and we suggest that this property of major secreted antigens of M. tuberculosis indicates an important role in mycobacterial disease and in the binding of BCG to tumor cells during immunotherapy of bladder cancer.
Full text
PDF![3046](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/773e/259698/9baabbe13320/iai00084-0044.png)
![3047](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/773e/259698/7d21a9228447/iai00084-0045.png)
![3048](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/773e/259698/6afc7db3a60f/iai00084-0046.png)
![3049](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/773e/259698/5b0c5bf620d9/iai00084-0047.png)
![3050](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/773e/259698/78cb8dda5c5a/iai00084-0048.png)
![3051](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/773e/259698/105fd791244a/iai00084-0049.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abou-Zeid C., Harboe M., Rook G. A. Characterization of the secreted antigens of Mycobacterium bovis BCG: comparison of the 46-kilodalton dimeric protein with proteins MPB64 and MPB70. Infect Immun. 1987 Dec;55(12):3213–3214. doi: 10.1128/iai.55.12.3213-3214.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abou-Zeid C., Smith I., Grange J. M., Ratliff T. L., Steele J., Rook G. A. The secreted antigens of Mycobacterium tuberculosis and their relationship to those recognized by the available antibodies. J Gen Microbiol. 1988 Feb;134(2):531–538. doi: 10.1099/00221287-134-2-531. [DOI] [PubMed] [Google Scholar]
- Abou-Zeid C., Smith I., Grange J., Steele J., Rook G. Subdivision of daughter strains of bacille Calmette-Guérin (BCG) according to secreted protein patterns. J Gen Microbiol. 1986 Nov;132(11):3047–3053. doi: 10.1099/00221287-132-11-3047. [DOI] [PubMed] [Google Scholar]
- De Bruyn J., Huygen K., Bosmans R., Fauville M., Lippens R., Van Vooren J. P., Falmagne P., Weckx M., Wiker H. G., Harboe M. Purification, characterization and identification of a 32 kDa protein antigen of Mycobacterium bovis BCG. Microb Pathog. 1987 May;2(5):351–366. doi: 10.1016/0882-4010(87)90077-5. [DOI] [PubMed] [Google Scholar]
- Fröman G., Switalski L. M., Speziale P., Hök M. Isolation and characterization of a fibronectin receptor from Staphylococcus aureus. J Biol Chem. 1987 May 15;262(14):6564–6571. [PubMed] [Google Scholar]
- Hamill R. J. Role of fibronectin in infective endocarditis. Rev Infect Dis. 1987 Jul-Aug;9 (Suppl 4):S360–S371. doi: 10.1093/clinids/9.supplement_4.s360. [DOI] [PubMed] [Google Scholar]
- Harboe M., Mshana R. N., Closs O., Kronvall G., Axelsen N. H. Cross-reactions between mycobacteria. II. Crossed immunoelectrophoretic analysis of soluble antigens of BCG and comparison with other mycobacteria. Scand J Immunol. 1979;9(2):115–124. doi: 10.1111/j.1365-3083.1979.tb02713.x. [DOI] [PubMed] [Google Scholar]
- Huygen K., Van Vooren J. P., Turneer M., Bosmans R., Dierckx P., De Bruyn J. Specific lymphoproliferation, gamma interferon production, and serum immunoglobulin G directed against a purified 32 kDa mycobacterial protein antigen (P32) in patients with active tuberculosis. Scand J Immunol. 1988 Feb;27(2):187–194. doi: 10.1111/j.1365-3083.1988.tb02338.x. [DOI] [PubMed] [Google Scholar]
- Hynes R. O., Yamada K. M. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982 Nov;95(2 Pt 1):369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- McKeown-Longo P. J., Mosher D. F. Interaction of the 70,000-mol-wt amino-terminal fragment of fibronectin with the matrix-assembly receptor of fibroblasts. J Cell Biol. 1985 Feb;100(2):364–374. doi: 10.1083/jcb.100.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nealon T. J., Beachey E. H., Courtney H. S., Simpson W. A. Release of fibronectin-lipoteichoic acid complexes from group A streptococci with penicillin. Infect Immun. 1986 Feb;51(2):529–535. doi: 10.1128/iai.51.2.529-535.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orme I. M. The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with Mycobacterium tuberculosis. J Immunol. 1987 Jan 1;138(1):293–298. [PubMed] [Google Scholar]
- Ratliff T. L., McGarr J. A., Abou-Zeid C., Rook G. A., Stanford J. L., Aslanzadeh J., Brown E. J. Attachment of mycobacteria to fibronectin-coated surfaces. J Gen Microbiol. 1988 May;134(5):1307–1313. doi: 10.1099/00221287-134-5-1307. [DOI] [PubMed] [Google Scholar]
- Ratliff T. L., Palmer J. O., McGarr J. A., Brown E. J. Intravesical Bacillus Calmette-Guérin therapy for murine bladder tumors: initiation of the response by fibronectin-mediated attachment of Bacillus Calmette-Guérin. Cancer Res. 1987 Apr 1;47(7):1762–1766. [PubMed] [Google Scholar]
- Rook G. A., Champion B. R., Steele J., Varey A. M., Stanford J. L. I-A restricted activation by T cell lines of anti-tuberculosis activity in murine macrophages. Clin Exp Immunol. 1985 Feb;59(2):414–420. [PMC free article] [PubMed] [Google Scholar]
- Rook G. A., Steele J., Barnass S., Mace J., Stanford J. L. Responsiveness to live M. tuberculosis, and common antigens, of sonicate-stimulated T cell lines from normal donors. Clin Exp Immunol. 1986 Jan;63(1):105–110. [PMC free article] [PubMed] [Google Scholar]
- Schou C., Yuan Z. L., Andersen A. B., Bennedsen J. Production and partial characterization of monoclonal hybridoma antibodies to Mycobacterium tuberculosis. Acta Pathol Microbiol Immunol Scand C. 1985 Dec;93(6):265–272. doi: 10.1111/j.1699-0463.1985.tb02955.x. [DOI] [PubMed] [Google Scholar]
- Speziale P., Hök M., Switalski L. M., Wadström T. Fibronectin binding to a Streptococcus pyogenes strain. J Bacteriol. 1984 Feb;157(2):420–427. doi: 10.1128/jb.157.2.420-427.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D. D., Baseman J. B., Alderete J. F. Fibronectin mediates Treponema pallidum cytadherence through recognition of fibronectin cell-binding domain. J Exp Med. 1985 Mar 1;161(3):514–525. doi: 10.1084/jem.161.3.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vartio T. Characterization of the binding domains in the fragments cleaved by cathepsin G from human plasma fibronectin. Eur J Biochem. 1982 Apr 1;123(2):223–233. doi: 10.1111/j.1432-1033.1982.tb19757.x. [DOI] [PubMed] [Google Scholar]
- Vuento M., Vaheri A. Purification of fibronectin from human plasma by affinity chromatography under non-denaturing conditions. Biochem J. 1979 Nov 1;183(2):331–337. doi: 10.1042/bj1830331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiker H. G., Harboe M., Bennedsen J., Closs O. The antigens of Mycobacterium tuberculosis, H37Rv, studied by crossed immunoelectrophoresis. Comparison with a reference system for Mycobacterium bovis, BCG. Scand J Immunol. 1988 Feb;27(2):223–239. doi: 10.1111/j.1365-3083.1988.tb02342.x. [DOI] [PubMed] [Google Scholar]
- Wiker H. G., Harboe M., Lea T. E. Purification and characterization of two protein antigens from the heterogeneous BCG85 complex in Mycobacterium bovis BCG. Int Arch Allergy Appl Immunol. 1986;81(4):298–306. doi: 10.1159/000234153. [DOI] [PubMed] [Google Scholar]
- Wiker H. G., Harboe M., Nagai S., Patarroyo M. E., Ramirez C., Cruz N. MPB59, a widely cross-reacting protein of Mycobacterium bovis BCG. Int Arch Allergy Appl Immunol. 1986;81(4):307–314. doi: 10.1159/000234154. [DOI] [PubMed] [Google Scholar]
- Worsaae A., Ljungqvist L., Hasløv K., Heron I., Bennedsen J. Allergenic and blastogenic reactivity of three antigens from Mycobacterium tuberculosis in sensitized guinea pigs. Infect Immun. 1987 Dec;55(12):2922–2927. doi: 10.1128/iai.55.12.2922-2927.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]