Abstract

The first EPR study of the trisamidoamine complex, [Mo]N2, where [Mo] = [Mo(III)[HIPTN3N]3- = [3,5-(2,4,6-i-Pr3-C6H2)2C6H3NCH2CH2]3N3-], reveals that this low-spin (S = ½) [d3] complex exhibits a 2E state that undergoes a pseudo Jahn-Teller distortion in the adiabatic limit, modified by interactions with the solvent, and gives approximate values of interaction energies. The experiments establish that [Mo]N2 exhibits the low-spin [e3] electronic configuration, not [a2e1], with the a(z2) antibonding orbital substantially higher in energy than the e[xz, yz] orbitals.
The sterically encumbered trisamidoamine (TAA) complex1,2 [Mo]=Mo[HIPTN3N], Inset 1, is extremely important for its ability to catalyze the reduction of N2 to NH3,3 and for the mechanistic insights into this process that it provides; of the thirteen compounds that are postulated to be involved in the formation of 2NH3, the structures of eight already have been determined by x-ray diffraction.4,5 Nonetheless, at present there is little understanding of the particular features of the electronic structure of the [Mo]L complexes that underlie their reactivity.
Inset 1.
The key first step in the catalytic cycle is N2-bound [Mo]N2,6 (Inset 1) which contains a Mo(III) that has been shown by magnetic susceptibility measurements to have a low-spin (ls) [d3; S=1/2] electronic configuration. It has not been emphasized that this is one of the rarest configurations in coordination chemistry. To our knowledge, there is only one report of a ls-[d3] complex of any transition ion prior to the synthesis of the TAA complexes.7 Nor has it been noted that a ls-[d3] ion in the trigonal-bipyramidal coordination environment of [Mo]N2 exhibits a doubly-degenerate 2E ground state, Scheme 1, that is subject to a Jahn-Teller (JT) distortion by vibronic coupling to doubly-degenerate e2 vibrations.8,9 Indeed, as shown in the scheme, this ls-[d3] complex has two possible electronic configurations: [e3] and [a2e1], each doubly degenerate. Although the former is suggested to apply,4 this has not been tested. This report first describes the possible vibronic behaviors of [Mo]N2. It then presents an EPR study that characterizes the electronic configuration and vibronic properties of this complex.
Scheme 1.
Both [d3; S=1/2] configurations of Scheme 1 exhibit unquenched orbital angular momentum, and splitting of the orbital degeneracy by spin-orbit coupling (SOC) competes with the JT effect (JTE). Linear vibronic coupling is describable in terms of a single composite (‘interaction’) e2 mode,8 in which the molecule undergoes a ‘pseudo-Jahn-Teller’ (PJT) distortion, ρ0,8
| (1) |
provided the JT vibronic coupling is strong enough, namely ρ0 is real. Here K is the effective force constant of the interaction mode, F is the linear coefficient of vibronic coupling to this mode, and λ is the SOC constant. This JTE replaces the electronic degeneracy with a vibronic degeneracy in which the complex is distorted (e.g.: equilateral → isosceles triangle; axial → non-axial N2) and the distortion ‘pseudo-rotates’. If the JT vibronic coupling is weak (ρ0 is imaginary) the JT distortion is quenched and [Mo]N2 retains the trigonal symmetry.
The molecular adiabatic potential energy surface (APES) of an isolated molecule is a function of the PJT distortion, ρ, but is independent of the phase angle (φ) that defines the direction of the distortion. One must further allow for a solvent-dependent environmental contribution to the e-orbital splitting, the ‘solvent potential’, VL,10 resulting in APES energies, W± = Kρ2/2±2[(λ/2)2 + (Fρ sinφ)2 + (Fρ cosφ) + VL)2]1/2. When VL = 0, the ground APES (W-) is the well-known ‘modified Mexican hat’, Fig 1A, with the minimum of the ‘trough’ at ρ0.8,9 VL ≠ 0 skews the ground APES, Fig 1B, favoring a particular distortion. At low temperatures, the dynamic PJT distortion will localize at the skewed APES minimum; localization also is favored by quadratic JT coupling.8
Figure 1.

Lower PJT APES (W-) calculated with (A) λ = 800 cm −1, K = 1 mdyn/A, Fρ0 = 0.95λ; (B) as in A, but with VL = 0.1λ.
The X-band CW EPR spectrum of S = ½ [Mo]N2 in toluene, Fig 2, exhibits axial symmetry, with g⊥ = 1.61 < 2 < g‖ = 3.03; identical values were obtained from Q-band CW and spin echo-EPR spectra.11,12 The g-values distinguish unambiguously between the [e3] and [a2e1] configurations, and give insights into the vibronic and solvent interactions. We begin by considering a two-orbital model Hamiltonian in which vibronic coupling with the interaction mode combines with SOC to mix and split the e(xz, yz; mS = ±1) orbitals.13 This PJT model gives an axial g-tensor for the ground APES with g‖ along the trigonal axis. The [g‖, g⊥] components at the APES minimum depend on the ratio of the sum of equilibrium distortion and environmental energies to the SOC, [(Fρ0) + VL/2]/λ, through the fictitious angle 2θ;
Figure 2.

9.36 GHz EPR of [Mo]N2. The ‘gaps’ at g ∼ 2 in some spectra eliminate signals from decomposition products and/or precipitated complex in the poorly-glassing THF and octane, chosen to vary VL.
| (2) |
| (3a) |
| (3b) |
| (3c) |
the quantity (1 - k) corresponds to d-electron delocalization. As 2θ increases from 0 (JTE quenched; no distortion) to π/2 (SOC quenched), the [e3] configuration gives [ 0 ≤ g⊥ ≤ 2; 4 ≥ g‖ ≥ 2], while [a2e1] gives [0 ≤ g‖ ≤ g⊥ ≤ 2]. The observed g-values thus require the [e3] configuration for [Mo]N2. Analysis further gives d-electron delocalization of (1-k) = 15% and a distortion energy with tan 2θ = 1.4. The PJT splitting between the lower APES minimum and the upper APES is large, ΔE(ρ0) = 2λ[(1/2)2 + ((tan 2θ)/2)2]1/2 ∼ 2λ ∼ 1600 cm-1.14 As a result, the ground and excited APES should be vibronically decoupled (‘strong-coupling’ or adiabatic limit), and the system well-described by the ground APES and its g-values.8,9 The JT energies may even be large enough to have an influence on the energetics of reaction.
Variations in the g-values with solvent, g‖ = 3.03 (toluene), 3.10 (THF), 3.26 (octane) (Fig 2) reveal the presence of an environmental influence.10 Taking octane as approximating a non-perturbing environment, VL(octane) → 0, the g-values provide interaction parameters through eq 2: Fρ0/λ ∼ 1; VL(THF)/ λ ∼ 0.3, and VL(toluene)/λ ∼ 0.4. The small environmental term, Fρ0 > VL, contrasts with the PJT-active MCp2,10,16 M = Co(II), Fe(I), and Fe(III), where Fρ0 ≪ VL,.10,15-17 The reversal of this inequality for [Mo]N2 is noteworthy, as the bulky HIPT substituents were in fact incorporated to shield the metal center from its environment.
The g-values of [Mo]N2 in toluene do not shift significantly as temperature increases, whereas in THF and octane, solvents with smaller VL, the g-values shift slightly (Fig 2). Unlike the well-studied JTE for Cu(II),8,9,17 this behavior cannot be used as evidence regarding possible reorientation of a trapped JT distortion. Warping of the ground APES of Cu(II) ions leads to three alternate JT distortion orientations with different g-tensor orientations, and thermally activated reorientation of the distortion causes strong ‘motional’ effects in the Cu(II) g-values. In contrast, g‖ for [Mo]N2 is oriented along the trigonal axis for all orientations of the PJT distortion (angles, φ), so reorientation has no effect. We instead attribute g-shifts to thermal excitations within the energy ‘well’ of the skewed APES (Fig 1B), which is shallower for smaller values of VL. The EPR signal for [Mo]N2 in toluene does not broaden with increasing temperature; those for [Mo]N2 in THF and octane broaden only slightly (Fig 2). This contrasts with the substantial broadening from Orbach relaxation by low-lying states of the PJT-active MCp2,10,15 and indicates that [Mo]N2 has no low-lying excitations (δ, Scheme 1, is large).
In summary, this first EPR study of an [Mo]L complex establishes that [Mo]N2 exhibits the ls [e3] electronic configuration and the JTE in the vibronic strong-coupling (adiabatic) limit. The anti-bonding a(z2) orbital is considerably higher in energy than e(xz, yz), presumably because of interactions with the axial nitrogen atoms. It appears that interactions with the solvent localize the PJT distortion of [Mo]N2 at low temperatures, even though the complex is highly sterically encumbered. If there is no PJT distortion or a pseudo-rotating one, hyperfine tensors of the in-plane N atoms as determined by 14,15N ENDOR studies of [Mo]N2 (in progress) will be identical; if skewing of the APES selects a particular distortion, as proposed, they will not be equal. DFT computations also are in progress to identify the vibrations that contribute to the composite interaction mode. ENDOR studies of [Mo]N2 and other [Mo]L also will permit comparison with intermediates trapped during the turnover of nitrogenase.19,20
Acknowledgments
This work was supported by the NIH (HL13531, BMH; GM31978, RRS; GM067349, RLM) and NSF (MCB0316038, BMH). We thank Prof. J. Telser for insightful remarks and Mr. Clark Davoust for technical assistance.
References
- 1.HIPT = hexaisopropylterphenyl; [HIPTN3N]3- = [3,5-(2,4,6-i-Pr3-C6H2)2C6H3NCH2CH2]3N3-
- 2.Laplaza CE, Cummins CC. Science. 1995;268:861–863. doi: 10.1126/science.268.5212.861. [DOI] [PubMed] [Google Scholar]
- 3.Yandulov DV, Schrock RR. Science. 2003;301:76–78. doi: 10.1126/science.1085326. [DOI] [PubMed] [Google Scholar]
- 4.Schrock RR. Phil Trans R Soc Lond A. 2005;363:959–969. doi: 10.1098/rsta.2004.1541. [DOI] [PubMed] [Google Scholar]
- 5.(a) Schrock RR. Acc Chem Res. 2005;38:955. doi: 10.1021/ar0501121. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Weare WW, Dai C, Byrnes MJ, Chin J, Schrock RR, Müller P. Proc Nat Acad Sci. 2006;103:17099–17106. doi: 10.1073/pnas.0602778103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.(a) Yandulov DV, Schrock RR. Inorg Chem. 2005;44:1103. doi: 10.1021/ic040095w. [DOI] [PubMed] [Google Scholar]; (b) Weare WW, Schrock RR, Hock AS, Mueller P. Inorg Chem. 2006;45:9185–9196. doi: 10.1021/ic0613457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Rossman GR, Tsay FD, Gray HB. Inorg Chem. 1973;12:824–829. [Google Scholar]
- 8.Bersuker IB. The Jahn-Teller Effect. First. Cambridge University Press; Cambridge: 2006. [Google Scholar]
- 9.Englman R. The Jahn-Teller Effect in Molecules and Crystals (Monographs in Chemical Physics Series) 1972 [Google Scholar]
- 10.Ammeter JH. J Magn Reson. 1978;30:299–325. [Google Scholar]
- 11.X-band EPR spectra were collected with a Bruker ESP300 spectrometer equipped with an Oxford ITC503 cryostat.
- 12.The 95,97Mo (23% abundance) hyperfine pattern, A‖ ∼ 45-50 G is visible as a low-field shoulder on g‖ of the toluene spectrum.
- 13.For large g shifts, as seen here, coupling to the [xy, x2-y2] orbitals can be ignored.
- 14.Weil JA, Bolton JR, Wertz JE. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. John Wiley & Sons, Inc; New York: 1994. [Google Scholar]
- 15.Ammeter JH, Swalen JD. J Chem Phys. 1972;57:678–698. [Google Scholar]
- 16.This potential is equivalent to the strain that influences the JT effect in Cu(II) crystals studied by Hitchman and coworkers.
- 17.Hitchman MA, Yablokov YV, Petrashen VE, Augustyniak-Jablokov MA, Stratemeier H, Riley MJ, Lukaszewicz K, Tomaszewski PE, Pietraszko A. Inorg Chem. 2002;41:229–238. doi: 10.1021/ic010464d. [DOI] [PubMed] [Google Scholar]
- 18.It will be shown elsewhere that the observation of an axial EPR signal (Fig 2) implies that δ/λ > 7-10.
- 19.Dos Santos PC, Igarashi RY, Lee HI, Hoffman BM, Seefeldt LC, Dean DR. Acc Chem Res. 2005;38:208–214. doi: 10.1021/ar040050z. [DOI] [PubMed] [Google Scholar]
- 20.Barney BM, Yang TC, Igarashi RY, Santos PCD, Laryukhin M, Lee HI, Hoffman BM, Dean DR, Seefeldt LC. J Am Chem Soc. 2005;127:14960–14961. doi: 10.1021/ja0539342. [DOI] [PubMed] [Google Scholar]


