Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1988 May;56(5):1171–1179. doi: 10.1128/iai.56.5.1171-1179.1988

Cellular defense of the avian respiratory system: influx and nonopsonic phagocytosis by respiratory phagocytes activated by Pasteurella multocida.

T E Toth 1, R H Pyle 1, T Caceci 1, P B Siegel 1, D Ochs 1
PMCID: PMC259780  PMID: 3356464

Abstract

Poultry have a very limited number of resident macrophages in the normal steady-state respiratory tract. Thus, poultry must rely heavily on active migration of phagocytic cells to the lungs and air sacs in defending against respiratory pathogens. Intratracheal administration of a live, apathogenic Pasteurella multocida vaccine (Choloral; Clemson University strain) increased the number of avian respiratory phagocytes (ARP; obtained by lavage of lungs and air sacs) within 24 h by 3 orders of magnitude compared with the number of ARP obtained from mock-inoculated controls and from nonreacting chickens. Chickens yielding a high number of ARP did not show any sign of respiratory disease. Flow cytometric analysis of ARP that were exposed to 20 nonopsonized fluorescent microspheres per ARP for 30 min at 37 degrees C demonstrated a fivefold increase in the percentage of actively phagocytic cells in the ARP populations of stimulated chickens compared with the percentage of phagocytic ARP for mock-inoculated control birds. The phagocytic capacity (relative number of engulfed microspheres) of ARP from stimulated birds doubled during the same time. The flow cytometric observations were confirmed by fluorescence microscopy. These results indicate that activation by avirulent replicating agents of phagocytic cells of chicken to migrate to the respiratory tract may be a means of defending poultry against air sacculitis and pneumonia.

Full text

PDF
1171

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellavite P., Dri P., Bisiacchi B., Patriarca P. Catalase deficiency in myeloperoxidase deficient polymorphonuclear leucocytes from chicken. FEBS Lett. 1977 Sep 1;81(1):73–76. doi: 10.1016/0014-5793(77)80931-9. [DOI] [PubMed] [Google Scholar]
  2. Blair O. C., Carbone R., Sartorelli A. C. Differentiation of HL-60 promyelocytic leukemia cells: simultaneous determination of phagocytic activity and cell cycle distribution by flow cytometry. Cytometry. 1986 Mar;7(2):171–177. doi: 10.1002/cyto.990070208. [DOI] [PubMed] [Google Scholar]
  3. Brain J. D., Golde D. W., Green G. M., Massaro D. J., Valberg P. A., Ward P. A., Werb Z. Biologic potential of pulmonary macrophages. Am Rev Respir Dis. 1978 Aug;118(2):435–443. doi: 10.1164/arrd.1978.118.2.435. [DOI] [PubMed] [Google Scholar]
  4. Cheung A. T., Kurland G., Miller M. E., Ford E. W., Ayin S. A., Walsh E. M. Host defense deficiency in newborn nonhuman primate lungs. J Med Primatol. 1986;15(1):37–47. [PubMed] [Google Scholar]
  5. Coates S. R., Buckner D. K., Jensen M. M. The inhibitory effect of Corynebacterium parvum and Pasteurella multocida pretreatment on staphylococcal synovitis in turkeys. Avian Dis. 1977 Apr-Jun;21(2):319–322. [PubMed] [Google Scholar]
  6. Crissman H. A., Steinkamp J. A. Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations. J Cell Biol. 1973 Dec;59(3):766–771. doi: 10.1083/jcb.59.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daniele R. P., Elias J. A., Epstein P. E., Rossman M. D. Bronchoalveolar lavage: role in the pathogenesis, diagnosis, and management of interstitial lung disease. Ann Intern Med. 1985 Jan;102(1):93–108. doi: 10.7326/0003-4819-102-1-93. [DOI] [PubMed] [Google Scholar]
  8. Danley D. L., Polakoff J. Rapid killing of monocytes in vitro by Candida albicans yeast cells. Infect Immun. 1986 Jan;51(1):307–313. doi: 10.1128/iai.51.1.307-313.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dunn M. M., Toews G. B., Hart D., Pierce A. K. The effects of systemic immunization of pulmonary clearance of Pseudomonas aeruginosa. Am Rev Respir Dis. 1985 Mar;131(3):426–431. doi: 10.1164/arrd.1985.131.3.426. [DOI] [PubMed] [Google Scholar]
  10. Fick R. B., Jr Cell-mediated antibacterial defenses of the distal airways. Am Rev Respir Dis. 1985 May;131(5):S43–S48. doi: 10.1164/arrd.1985.131.S5.S43. [DOI] [PubMed] [Google Scholar]
  11. Ficken M. D., Edwards J. F., Lay J. C. Induction, collection, and partial characterization of induced respiratory macrophages of the turkey. Avian Dis. 1986 Oct-Dec;30(4):766–771. [PubMed] [Google Scholar]
  12. Henson P. M., Larsen G. L., Henson J. E., Newman S. L., Musson R. A., Leslie C. C. Resolution of pulmonary inflammation. Fed Proc. 1984 Oct;43(13):2799–2806. [PubMed] [Google Scholar]
  13. Hudson A. R., Kilburn K. H., Halprin G. M., McKenzie W. N. Granulocyte recruitment to airways exposed to endotoxin aerosols. Am Rev Respir Dis. 1977 Jan;115(1):89–95. doi: 10.1164/arrd.1977.115.1.89. [DOI] [PubMed] [Google Scholar]
  14. Karnovsky M. L., Lazdins J. K. Biochemical criteria for activated macrophages. J Immunol. 1978 Sep;121(3):809–813. [PubMed] [Google Scholar]
  15. Lehnert B. E., Tech C. Quantitative evaluation of opsonin-independent phagocytosis by alveolar macrophages in monolayer using polystyrene microspheres. J Immunol Methods. 1985 Apr 22;78(2):337–344. doi: 10.1016/0022-1759(85)90090-0. [DOI] [PubMed] [Google Scholar]
  16. McGuire R. L., Babiuk L. A. Evidence for defective neutrophil function in lungs of calves exposed to infectious bovine rhinotracheitis virus. Vet Immunol Immunopathol. 1984 Jan;5(3):259–271. doi: 10.1016/0165-2427(84)90039-4. [DOI] [PubMed] [Google Scholar]
  17. Oda T., Maeda H. A new simple fluorometric assay for phagocytosis. J Immunol Methods. 1986 Apr 17;88(2):175–183. doi: 10.1016/0022-1759(86)90004-9. [DOI] [PubMed] [Google Scholar]
  18. Penniall R., Spitznagel J. K. Chicken neutrophils: oxidative metabolism in phagocytic cells devoid of myeloperoxidase. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5012–5015. doi: 10.1073/pnas.72.12.5012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pennington J. E., Rossing T. H., Boerth L. W., Lee T. H. Isolation and partial characterization of a human alveolar macrophage-derived neutrophil-activating factor. J Clin Invest. 1985 Apr;75(4):1230–1237. doi: 10.1172/JCI111820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pennington J. E., Rossing T. H., Boerth L. W. The effect of human alveolar macrophages on the bactericidal capacity of neutrophils. J Infect Dis. 1983 Jul;148(1):101–109. doi: 10.1093/infdis/148.1.101. [DOI] [PubMed] [Google Scholar]
  21. Robbins R. A., Justice J. M., Rasmussen J. K., Russ W. D., Thomas K. R., Rennard S. I. Role of chemotactic factor inactivator in modulating alveolar macrophage-derived neutrophil chemotactic activity. J Lab Clin Med. 1987 Feb;109(2):164–170. [PubMed] [Google Scholar]
  22. Schlink G. T., Olson L. D. Effects of bursectomy, irradiation, and cyclophosphamide on turkeys vaccinated with CU cholera strain. Avian Dis. 1987 Jan-Mar;31(1):13–21. [PubMed] [Google Scholar]
  23. Schlink G. T., Olson L. D. Fowl cholera vaccination of growing turkeys with CU strain via routes other than oral. Avian Dis. 1987 Jan-Mar;31(1):22–28. [PubMed] [Google Scholar]
  24. Schlink G. T., Olson L. D. Vaccination of turkey breeder hens and toms for fowl cholera with CU strain. Avian Dis. 1987 Jan-Mar;31(1):29–38. [PubMed] [Google Scholar]
  25. Simons R. K., Maier R. V., Lennard E. S. Neutrophil function in a rat model of endotoxin-induced lung injury. Arch Surg. 1987 Feb;122(2):197–203. doi: 10.1001/archsurg.1987.01400140079010. [DOI] [PubMed] [Google Scholar]
  26. Sklar L. A. Real-time spectroscopic analysis of ligand-receptor dynamics. Annu Rev Biophys Biophys Chem. 1987;16:479–506. doi: 10.1146/annurev.bb.16.060187.002403. [DOI] [PubMed] [Google Scholar]
  27. Slauson D. O. The mediation of pulmonary inflammatory injury. Adv Vet Sci Comp Med. 1982;26:99–153. [PubMed] [Google Scholar]
  28. Snella M. C. Production of a neutrophil chemotactic factor by endotoxin stimulated alveolar macrophages in vitro. Br J Exp Pathol. 1986 Dec;67(6):801–807. [PMC free article] [PubMed] [Google Scholar]
  29. Sugar A. M., Field K. G. Characteristics of the pulmonary cellular immune response to two strains of Blastomyces dermatitidis in the mouse. Am Rev Respir Dis. 1985 Dec;132(6):1319–1323. doi: 10.1164/arrd.1985.132.6.1319. [DOI] [PubMed] [Google Scholar]
  30. Toth T. E., Siegel P. B. Cellular defense of the avian respiratory tract: paucity of free-residing macrophages in the normal chicken. Avian Dis. 1986 Jan-Mar;30(1):67–75. [PubMed] [Google Scholar]
  31. Toth T. E., Siegel P., Veit H. Cellular defense of the avian respiratory system. Influx of phagocytes: elicitation versus activation. Avian Dis. 1987 Oct-Dec;31(4):861–867. [PubMed] [Google Scholar]
  32. White J. C., Lanser M. E., Nelson S., Jakab G. J. Methylprednisolone impairs the bactericidal activity of alveolar macrophages. J Surg Res. 1985 Jul;39(1):46–52. doi: 10.1016/0022-4804(85)90160-x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES