Abstract
The alveolar macrophage (AM) is exquisitely sensitive to activation by gram-negative bacterial endotoxin, an agent associated with adult respiratory distress syndrome. We tested the hypothesis that specific functions of the AM are activated selectively by in vivo endotoxin while others remain unaffected. AMs were recovered from the airspaces of control and endotoxin-treated (5.0 mg/kg) rats, and functional assays were performed. We measured macrophage adherence, viability, and survival; chemotactic movement; hydrogen peroxide production; phagocytic function; and the secretion of representative biological response modifiers. Endotoxemia enhanced AM adherence during a 15-h incubation period, while not affecting cell number or viability. There was a 60% reduction in AM chemotactic movement and a 65% augmentation of hydrogen peroxide production, but no effect on AM phagocytosis of Staphylococcus aureus. Endotoxemia enhanced AM production of macrophage-derived chemotactic activity for neutrophils by 70% and interleukin-1 activity by 100%, but did not affect the production of macrophage-derived growth factor activity for fibroblasts. We conclude that endotoxemia alters the functions of the AM in a selective manner; certain functions are enhanced, while others are inhibited or not affected. We believe that this selective effect on AM functional capacity may be an important mechanism explaining certain aspects of the course, duration, or outcome of adult respiratory distress syndrome associated with gram-negative sepsis.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
- Babior B. M. Oxygen-dependent microbial killing by phagocytes (second of two parts). N Engl J Med. 1978 Mar 30;298(13):721–725. doi: 10.1056/NEJM197803302981305. [DOI] [PubMed] [Google Scholar]
- Christman J. W., Rinaldo J. E., Henson J. E., Moore S. A., Dauber J. H. Modification by hyperoxia in vivo of endotoxin-induced neutrophil alveolitis in rats. Production of chemotactic factors by alveolar macrophages and ultrastructure. Am Rev Respir Dis. 1985 Jul;132(1):152–158. doi: 10.1164/arrd.1985.132.1.152. [DOI] [PubMed] [Google Scholar]
- Davis W. B., Barsoum I. S., Ramwell P. W., Yeager H., Jr Human alveolar macrophages: effects of endotoxin in vitro. Infect Immun. 1980 Dec;30(3):753–758. doi: 10.1128/iai.30.3.753-758.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falk W., Goodwin R. H., Jr, Leonard E. J. A 48-well micro chemotaxis assembly for rapid and accurate measurement of leukocyte migration. J Immunol Methods. 1980;33(3):239–247. doi: 10.1016/0022-1759(80)90211-2. [DOI] [PubMed] [Google Scholar]
- Fox R. A., Rajaraman K. Endotoxin and macrophage-migration inhibition. Cell Immunol. 1980 Aug 1;53(2):333–340. doi: 10.1016/0008-8749(80)90333-0. [DOI] [PubMed] [Google Scholar]
- Geczy C. L., Farram E., Moon D. K., Meyer P. A., McKenzie I. F. Macrophage procoagulant activity as a measure of cell-mediated immunity in the mouse. J Immunol. 1983 Jun;130(6):2743–2749. [PubMed] [Google Scholar]
- Geczy C. L., Hopper K. E. A mechanism of migration inhibition in delayed-type hypersensitivity reactions. II. Lymphokines promote procoagulant activity of macrophages in vitro. J Immunol. 1981 Mar;126(3):1059–1065. [PubMed] [Google Scholar]
- Harada R. N., Repine J. E. Pulmonary host defense mechanisms. Chest. 1985 Feb;87(2):247–252. doi: 10.1378/chest.87.2.247. [DOI] [PubMed] [Google Scholar]
- Heilman D. H. Regulation of endotoxin-induced inhibition of macrophage migration by fresh serum. Infect Immun. 1977 Aug;17(2):371–377. doi: 10.1128/iai.17.2.371-377.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hocking W. G., Golde D. W. The pulmonary-alveolar macrophage (first of two parts). N Engl J Med. 1979 Sep 13;301(11):580–587. doi: 10.1056/NEJM197909133011104. [DOI] [PubMed] [Google Scholar]
- Hocking W. G., Golde D. W. The pulmonary-alveolar macrophage (second of two parts). N Engl J Med. 1979 Sep 20;301(12):639–645. doi: 10.1056/NEJM197909203011205. [DOI] [PubMed] [Google Scholar]
- Kampschmidt R. F. The numerous postulated biological manifestations of interleukin-1. J Leukoc Biol. 1984 Sep;36(3):341–355. doi: 10.1002/jlb.36.3.341. [DOI] [PubMed] [Google Scholar]
- Kovacs E. J., Kelley J. Secretion of macrophage-derived growth factor during acute lung injury induced by bleomycin. J Leukoc Biol. 1985 Jan;37(1):1–14. doi: 10.1002/jlb.37.1.1. [DOI] [PubMed] [Google Scholar]
- Kreger B. E., Craven D. E., Carling P. C., McCabe W. R. Gram-negative bacteremia. III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am J Med. 1980 Mar;68(3):332–343. doi: 10.1016/0002-9343(80)90101-1. [DOI] [PubMed] [Google Scholar]
- Nagao S., Tanaka A., Onozaki K., Hashimoto T. Differences between macrophage migration inhibitions by lymphokines and muramyl dipeptide (MDP) or lipopolysaccharide (LPS): migration enhancement by lymphokines. Cell Immunol. 1982 Jul 15;71(1):1–11. doi: 10.1016/0008-8749(82)90491-9. [DOI] [PubMed] [Google Scholar]
- Nagao S., Tanaka A., Yamamoto Y., Koga T., Onoue K., Shiba T., Kusumoto K., Kotani S. Inhibition of macrophage migration by muramyl peptides. Infect Immun. 1979 May;24(2):308–312. doi: 10.1128/iai.24.2.308-312.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pick E., Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods. 1980;38(1-2):161–170. doi: 10.1016/0022-1759(80)90340-3. [DOI] [PubMed] [Google Scholar]
- Rinaldo J. E., Dauber J. H., Christman J., Rogers R. M. Neutrophil alveolitis following endotoxemia. Enhancement by previous exposure to hyperoxia. Am Rev Respir Dis. 1984 Dec;130(6):1065–1071. doi: 10.1164/arrd.1984.130.6.1065. [DOI] [PubMed] [Google Scholar]
- Rinaldo J. E., Henson J. E., Dauber J. H., Henson P. M. Role of alveolar macrophages in endotoxin-induced neutrophilic alveolitis in rats. Tissue Cell. 1985;17(4):461–472. doi: 10.1016/0040-8166(85)90025-4. [DOI] [PubMed] [Google Scholar]
- Shands J. W., Jr, Peavy D. L., Gormus B. J., McGraw J. In vitro and in vivo effects of endotoxin on mouse peritoneal cells. Infect Immun. 1974 Jan;9(1):106–112. doi: 10.1128/iai.9.1.106-112.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith K. A., Lachman L. B., Oppenheim J. J., Favata M. F. The functional relationship of the interleukins. J Exp Med. 1980 Jun 1;151(6):1551–1556. doi: 10.1084/jem.151.6.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stossel T. P. Phagocytosis (first of three parts). N Engl J Med. 1974 Mar 28;290(13):717–723. doi: 10.1056/NEJM197403282901306. [DOI] [PubMed] [Google Scholar]
- Stossel T. P. Phagocytosis (third of three parts). N Engl J Med. 1974 Apr 11;290(15):833–839. doi: 10.1056/NEJM197404112901506. [DOI] [PubMed] [Google Scholar]
- Takemura R., Werb Z. Secretory products of macrophages and their physiological functions. Am J Physiol. 1984 Jan;246(1 Pt 1):C1–C9. doi: 10.1152/ajpcell.1984.246.1.C1. [DOI] [PubMed] [Google Scholar]
- Toews G. B., Gross G. N., Pierce A. K. The relationship of inoculum size to lung bacterial clearance and phagocytic cell response in mice. Am Rev Respir Dis. 1979 Sep;120(3):559–566. doi: 10.1164/arrd.1979.120.3.559. [DOI] [PubMed] [Google Scholar]
