Abstract
Studies were undertaken to investigate the relationship of the sensitivity of Escherichia coli to the bactericidal properties of serum and the ability of different strains to induce and sustain endocardial infection in rats. Strains of E. coli demonstrated different degrees of serum sensitivity, as determined by a method which employed concentrations of serum from 10 to 95% and periods of incubation as long as 24 h. The greater the serum sensitivity of the E. coli strain, the less able it was to initiate infection and the more rapidly it was spontaneously eliminated from established infections. Endocardial infection with E. coli was established by intravenous challenge in rats with polyethylene catheters passing through the aortic valve into the left ventricle. An E. coli strain of low serum sensitivity was used; the initiation of infection depended upon the length of time the catheter had been in place and, in addition, whether the catheter was in place at the time of bacterial challenge. Removal of the catheter permitted spontaneous sterilization of the endocardial vegetations. The time necessary for sterilization was in direct proportion to the length of time the catheter remained in place following bacterial challenge. If the catheter was not removed, sterilization of the endocardial vegetations did not take place. These studies suggest that serum bactericidal activity is an important host defense mechanism, acting to prevent the initiation of endocarditis in the case of highly serum-sensitive E. coli and to sterilize experimentally induced endocarditis in the case of less-serum-sensitive bacteria. The catheter used to induce nonbacterial endocardial vegetations favored the colonization of vegetations by E. coli, and it delayed the spontaneous sterilization of infected vegetations which occurred in relation to the susceptibility of the strain to the bactericidal properties of the serum. This effect of the catheter was not attributable to bacteria remaining viable in its lumen, nor was it attributable to inhibition of the bactericidal capacity of the serum as measured in vitro. Whatever the mechanism responsible for the catheter effect, experimental studies of the evolution of infections established with this technique must take into consideration the duration of catheter placement and whether and for how long it was present before or after inoculation with test bacteria.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer G., Fekety F. R. Experimental endocarditis due to Pseudomonas aeruginosa. I. Description of a model. J Infect Dis. 1976 Jul;134(1):1–7. doi: 10.1093/infdis/134.1.1. [DOI] [PubMed] [Google Scholar]
- Dall L., Barnes W. G., Lane J. W., Mills J. Enzymatic modification of glycocalyx in the treatment of experimental endocarditis due to viridans streptococci. J Infect Dis. 1987 Nov;156(5):736–740. doi: 10.1093/infdis/156.5.736. [DOI] [PubMed] [Google Scholar]
- DeMatteo C. S., Hammer M. C., Baltch A. L., Smith R. P., Sutphen N. T., Michelsen P. B. Susceptibility of Pseudomonas aeruginosa to serum bactericidal activity. A comparison of three methods with clinical correlations. J Lab Clin Med. 1981 Oct;98(4):511–518. [PubMed] [Google Scholar]
- Durack D. T., Beeson P. B. Protective role of complement in experimental Escherichia coli endocarditis. Infect Immun. 1977 Apr;16(1):213–217. doi: 10.1128/iai.16.1.213-217.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fierer J., Finley F. Deficient serum bactericidal activity against Escherichia coli in patients with cirrhosis of the liver. J Clin Invest. 1979 May;63(5):912–921. doi: 10.1172/JCI109391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Francioli P. B., Freedman L. R. Streptococcal infection of endocardial and other intravascular vegetations in rabbits: natural history and effect of dexamethasone. Infect Immun. 1979 May;24(2):483–491. doi: 10.1128/iai.24.2.483-491.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank M. M. Complement in the pathophysiology of human disease. N Engl J Med. 1987 Jun 11;316(24):1525–1530. doi: 10.1056/NEJM198706113162407. [DOI] [PubMed] [Google Scholar]
- Freedman L. R., Valone J., Jr Experimental infective endocarditis. Prog Cardiovasc Dis. 1979 Nov-Dec;22(3):169–180. doi: 10.1016/0033-0620(79)90021-5. [DOI] [PubMed] [Google Scholar]
- Gutschik E., Norwood R. S., Møller S., Olling S. Experimental endocarditis in rabbits. 4. Experiments with Serratia marcescens: on the significance of serum susceptibility and proteolytic capacity of the strains and the influence of an indwelling catheter. Acta Pathol Microbiol Scand B. 1980 Oct;88(5):269–276. [PubMed] [Google Scholar]
- Héraïef E., Glauser M. P., Freedman L. R. Natural history of aortic valve endocarditis in rats. Infect Immun. 1982 Jul;37(1):127–131. doi: 10.1128/iai.37.1.127-131.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaspar R. L., Drutz D. J. Perihepatitis and hepatitis as complications of experimental endocarditis due to Neisseria gonorrhoeae in the rabbit. J Infect Dis. 1977 Jul;136(1):37–42. doi: 10.1093/infdis/136.1.37. [DOI] [PubMed] [Google Scholar]
- Pelletier L. L., Jr, Petersdorf R. G., Nielson K. Chemotherapy of experimental streptococcal endocarditis. V. Effect of duration of infection and retained intracardiac catheter on response to treatment. J Lab Clin Med. 1976 Apr;87(4):692–702. [PubMed] [Google Scholar]
- Peters G., Locci R., Pulverer G. Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters. Zentralbl Bakteriol Mikrobiol Hyg B. 1981;173(5):293–299. [PubMed] [Google Scholar]
- ROANTREE R. J., PAPPAS N. C. The survival of strains of enteric bacilli in the blood stream as related to their sensitivity to the bactericidal effect of serum. J Clin Invest. 1960 Jan;39:82–88. doi: 10.1172/JCI104031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reyes M. P., El-Khatib M. R., Brown W. J., Smith F., Lerner A. M. Synergy between carbenicillin and an aminoglycoside (gentamicin or tobramycin) against Pseudomonas aeruginosa isolated from patients with endocarditis and sensitivity of isolates to normal human serum. J Infect Dis. 1979 Aug;140(2):192–202. doi: 10.1093/infdis/140.2.192. [DOI] [PubMed] [Google Scholar]
- Roantree R. J., Rantz L. A. A STUDY OF THE RELATIONSHIP OF THE NORMAL BACTERICIDAL ACTIVITY OF HUMAN SERUM TO BACTERIAL INFECTION. J Clin Invest. 1960 Jan;39(1):72–81. doi: 10.1172/JCI104029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoenbaum S. C., Gardner P., Shillito J. Infections of cerebrospinal fluid shunts: epidemiology, clinical manifestations, and therapy. J Infect Dis. 1975 May;131(5):543–552. doi: 10.1093/infdis/131.5.543. [DOI] [PubMed] [Google Scholar]
- Sheth N. K., Rose H. D., Franson T. R., Buckmire F. L., Sohnle P. G. In vitro quantitative adherence of bacteria to intravascular catheters. J Surg Res. 1983 Mar;34(3):213–218. doi: 10.1016/0022-4804(83)90062-8. [DOI] [PubMed] [Google Scholar]
- Simberkoff M. S., Ricupero I., Rahal J. J., Jr Host resistance to Serratia marcescens infection: serum bactericidal activity and phagocytosis by normal blood leukocytes. J Lab Clin Med. 1976 Feb;87(2):206–217. [PubMed] [Google Scholar]
- Smadja C., Franco D. The LeVeen shunt in the elective treatment of intractable ascites in cirrhosis. A prospective study on 140 patients. Ann Surg. 1985 Apr;201(4):488–493. doi: 10.1097/00000658-198504000-00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor P. W. Bactericidal and bacteriolytic activity of serum against gram-negative bacteria. Microbiol Rev. 1983 Mar;47(1):46–83. doi: 10.1128/mr.47.1.46-83.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thörig L., Thompson J., van Furth R. Effects of immunization and anticoagulation on the development of experimental Escherichia coli endocarditis. Infect Immun. 1980 May;28(2):325–330. doi: 10.1128/iai.28.2.325-330.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vosti K. L., Randall E. Sensitivity of serologically classified strains of escherichia coli of human origin to the serum bactericidal system. Am J Med Sci. 1970 Feb;259(2):114–119. doi: 10.1097/00000441-197002000-00005. [DOI] [PubMed] [Google Scholar]
- Young L. S., Armstrong D. Human immunity to Pseudomonas aeruginosa. I. In-vitro interaction of bacteria, polymorphonuclear leukocytes, and serum factors. J Infect Dis. 1972 Sep;126(3):257–276. doi: 10.1093/infdis/126.3.257. [DOI] [PubMed] [Google Scholar]
- Zimmerli W., Waldvogel F. A., Vaudaux P., Nydegger U. E. Pathogenesis of foreign body infection: description and characteristics of an animal model. J Infect Dis. 1982 Oct;146(4):487–497. doi: 10.1093/infdis/146.4.487. [DOI] [PubMed] [Google Scholar]
