Abstract
Protective immunity of guinea pigs against Legionella pneumophila was studied by infecting the animals with a sublethal dose (about 2 x 10(4) CFU) of the organism. The bacteria multiplied in the liver, spleen, and lungs up to day 4 after the intraperitoneal infection. The live bacteria in these organs decreased quickly thereafter and were eliminated by day 7. A delayed-type skin reaction and lymphoproliferation of spleen cells to Formalin-killed L. pneumophila were detected from days 5 and 6, respectively, after infection. Peritoneal macrophages obtained from guinea pigs infected 6 days previously inhibited the intracellular growth of L. pneumophila. Antigen-stimulated spleen cell factor prepared from infected guinea pigs inhibited the intracellular growth of the organism in macrophages obtained from uninfected animals. Antigen-stimulated spleen cell factor prepared from spleen cells treated with anti-guinea pig T-cell monoclonal antibody did not inhibit growth. The activity of antigen-stimulated spleen cell factor was labile to pH 2 treatment, and the factor could not be absorbed by L. pneumophila antigen, suggesting that it contains gamma interferon. Our data show that T-cell-mediated immunity begins to work from an early period of infection with L. pneumophila in guinea pigs.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amano K., Williams J. C. Peptidoglycan of Legionella pneumophila: apparent resistance to lysozyme hydrolysis correlates with a high degree of peptide cross-linking. J Bacteriol. 1983 Jan;153(1):520–526. doi: 10.1128/jb.153.1.520-526.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barry R. A., Hinrichs D. J. Lack of correlative enhancement of passive transfer of delayed-type hypersensitivity and antilisterial resistance when using concanavalin A-stimulated primed spleen cells. Infect Immun. 1983 Mar;39(3):1208–1213. doi: 10.1128/iai.39.3.1208-1213.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berendt R. F., Young H. W., Allen R. G., Knutsen G. L. Dose-response of guinea pigs experimentally infected with aerosols of Legionella pneumophila. J Infect Dis. 1980 Feb;141(2):186–192. doi: 10.1093/infdis/141.2.186. [DOI] [PubMed] [Google Scholar]
- Breiman R. F., Horwitz M. A. Guinea pigs sublethally infected with aerosolized Legionella pneumophila develop humoral and cell-mediated immune responses and are protected against lethal aerosol challenge. A model for studying host defense against lung infections caused by intracellular pathogens. J Exp Med. 1987 Mar 1;165(3):799–811. doi: 10.1084/jem.165.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiba J., Chused T. M., Leiserson W. M., Zweig S. E., Shevach E. M. Production and characterization of monoclonal antibodies to guinea pig lymphoid differentiation antigens. J Immunol Methods. 1983 Oct 14;63(2):247–261. doi: 10.1016/0022-1759(83)90429-5. [DOI] [PubMed] [Google Scholar]
- Douvas G. S., Looker D. L., Vatter A. E., Crowle A. J. Gamma interferon activates human macrophages to become tumoricidal and leishmanicidal but enhances replication of macrophage-associated mycobacteria. Infect Immun. 1985 Oct;50(1):1–8. doi: 10.1128/iai.50.1.1-8.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott J. A., Winn W. C., Jr Treatment of alveolar macrophages with cytochalasin D inhibits uptake and subsequent growth of Legionella pneumophila. Infect Immun. 1986 Jan;51(1):31–36. doi: 10.1128/iai.51.1.31-36.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans R., Grant C. K., Cox H., Steele K., Alexander P. Thymus-derived lymphocytes produce an immunologically specific macrophage-arming factor. J Exp Med. 1972 Nov 1;136(5):1318–1322. doi: 10.1084/jem.136.5.1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feeley J. C., Gibson R. J., Gorman G. W., Langford N. C., Rasheed J. K., Mackel D. C., Baine W. B. Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol. 1979 Oct;10(4):437–441. doi: 10.1128/jcm.10.4.437-441.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraser D. W., Tsai T. R., Orenstein W., Parkin W. E., Beecham H. J., Sharrar R. G., Harris J., Mallison G. F., Martin S. M., McDade J. E. Legionnaires' disease: description of an epidemic of pneumonia. N Engl J Med. 1977 Dec 1;297(22):1189–1197. doi: 10.1056/NEJM197712012972201. [DOI] [PubMed] [Google Scholar]
- Friedman H., Widen R., Lee I., Klein T. Cellular immunity to Legionella pneumophila in guinea pigs assessed by direct and indirect migration inhibition reactions in vitro. Infect Immun. 1983 Sep;41(3):1132–1137. doi: 10.1128/iai.41.3.1132-1137.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedman R. L., Iglewski B. H., Miller R. D. Identification of a cytotoxin produced by Legionella pneumophila. Infect Immun. 1980 Jul;29(1):271–274. doi: 10.1128/iai.29.1.271-274.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedman R. L., Lochner J. E., Bigley R. H., Iglewski B. H. The effects of Legionella pneumophila toxin on oxidative processes and bacterial killing of human polymorphonuclear leukocytes. J Infect Dis. 1982 Sep;146(3):328–334. doi: 10.1093/infdis/146.3.328. [DOI] [PubMed] [Google Scholar]
- Gibson D. H., Baskerville A., Ashworth L. A., Fitzgeorge R. B. Non-specific protection against pulmonary Legionella pneumophila infection in guinea-pigs immunized and challenged with mycobacteria. Br J Exp Pathol. 1985 Jun;66(3):333–344. [PMC free article] [PubMed] [Google Scholar]
- Himeno K., Nomoto K., Kuroiwa A., Miyazaki S., Takeya K. Relation between delayed skin reactivity and macrophage migration inhibition or lymphocyte transformation in tuberculin-type hypersensitivity and Jones-Mote hypersensitivity. Microbiol Immunol. 1977;21(2):99–110. doi: 10.1111/j.1348-0421.1977.tb02812.x. [DOI] [PubMed] [Google Scholar]
- Horwitz M. A. Cell-mediated immunity in Legionnaires' disease. J Clin Invest. 1983 Jun;71(6):1686–1697. doi: 10.1172/JCI110923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horwitz M. A., Maxfield F. R. Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J Cell Biol. 1984 Dec;99(6):1936–1943. doi: 10.1083/jcb.99.6.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horwitz M. A., Silverstein S. C. Activated human monocytes inhibit the intracellular multiplication of Legionnaires' disease bacteria. J Exp Med. 1981 Nov 1;154(5):1618–1635. doi: 10.1084/jem.154.5.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horwitz M. A., Silverstein S. C. Interaction of the Legionnaires' disease bacterium (Legionella pneumophila) with human phagocytes. I. L. pneumophila resists killing by polymorphonuclear leukocytes, antibody, and complement. J Exp Med. 1981 Feb 1;153(2):386–397. doi: 10.1084/jem.153.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horwitz M. A., Silverstein S. C. Interaction of the legionnaires' disease bacterium (Legionella pneumophila) with human phagocytes. II. Antibody promotes binding of L. pneumophila to monocytes but does not inhibit intracellular multiplication. J Exp Med. 1981 Feb 1;153(2):398–406. doi: 10.1084/jem.153.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horwitz M. A., Silverstein S. C. Legionnaires' disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. J Clin Invest. 1980 Sep;66(3):441–450. doi: 10.1172/JCI109874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horwitz M. A. The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med. 1983 Dec 1;158(6):2108–2126. doi: 10.1084/jem.158.6.2108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hussein S., Curtis J., Akuffo H., Turk J. L. Dissociation between delayed-type hypersensitivity and resistance to pathogenic mycobacteria demonstrated by T-cell clones. Infect Immun. 1987 Mar;55(3):564–567. doi: 10.1128/iai.55.3.564-567.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kishimoto R. A., White J. D., Shirey F. G., McGann V. G., Berendt R. F., Larson E. W., Hedlund K. W. In vitro responses of guinea pig peritoneal macrophages to Legionella pneumophila. Infect Immun. 1981 Mar;31(3):1209–1213. doi: 10.1128/iai.31.3.1209-1213.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein T. W., Friedman H., Widen R. Relative potency of virulent versus avirulent Legionella pneumophila for induction of cell-mediated immunity. Infect Immun. 1984 Jun;44(3):753–755. doi: 10.1128/iai.44.3.753-755.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefford M. J., McGregor D. D. Immunological memory in tuberculosis. I. Influence of persisting viable organisms. Cell Immunol. 1974 Dec;14(3):417–428. doi: 10.1016/0008-8749(74)90192-0. [DOI] [PubMed] [Google Scholar]
- Mackaness G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med. 1969 May 1;129(5):973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMaster P. R., Tsang V. C., Wong K. H., Feeley J. C., Gann D. S. Comparative adjuvant activities of Legionella pneumophila and Mycobacterium tuberculosis. Int Arch Allergy Appl Immunol. 1984;73(4):357–362. doi: 10.1159/000233498. [DOI] [PubMed] [Google Scholar]
- Murray H. W., Rubin B. Y., Rothermel C. D. Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon-gamma is the activating lymphokine. J Clin Invest. 1983 Oct;72(4):1506–1510. doi: 10.1172/JCI111107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller H. E. Proteolytic action of Legionella pneumophila on human serum proteins. Infect Immun. 1980 Jan;27(1):51–53. doi: 10.1128/iai.27.1.51-53.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nash T. W., Libby D. M., Horwitz M. A. IFN-gamma-activated human alveolar macrophages inhibit the intracellular multiplication of Legionella pneumophila. J Immunol. 1988 Jun 1;140(11):3978–3981. [PubMed] [Google Scholar]
- Nash T. W., Libby D. M., Horwitz M. A. Interaction between the legionnaires' disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone. J Clin Invest. 1984 Sep;74(3):771–782. doi: 10.1172/JCI111493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajagopalan P., Dournon E., Vildé J. L., Pocidalo J. J. Direct activation of human monocyte-derived macrophages by a bacterial glycoprotein extract inhibits the intracellular multiplication of virulent Legionella pneumophila serogroup 1. Infect Immun. 1987 Sep;55(9):2234–2239. doi: 10.1128/iai.55.9.2234-2239.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothermel C. D., Rubin B. Y., Murray H. W. Gamma-interferon is the factor in lymphokine that activates human macrophages to inhibit intracellular Chlamydia psittaci replication. J Immunol. 1983 Nov;131(5):2542–2544. [PubMed] [Google Scholar]
- Toba H., Crawford J. T., Ellner J. J. Pathogenicity of Mycobacterium avium for human monocytes: absence of macrophage-activating factor activity of gamma interferon. Infect Immun. 1989 Jan;57(1):239–244. doi: 10.1128/iai.57.1.239-244.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkinson H. W., Fikes B. J., Cruce D. D. Indirect immunofluorescence test for serodiagnosis of Legionnaires disease: evidence for serogroup diversity of Legionnaires disease bacterial antigens and for multiple specificity of human antibodies. J Clin Microbiol. 1979 Mar;9(3):379–383. doi: 10.1128/jcm.9.3.379-383.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida S., Mizuguchi Y. Antibiotic susceptibility of Legionella pneumophia Philadelphia-1 in cultured guinea-pig peritoneal macrophages. J Gen Microbiol. 1984 Apr;130(4):901–906. doi: 10.1099/00221287-130-4-901. [DOI] [PubMed] [Google Scholar]
- Yoshida S., Mizuguchi Y. Multiplication of Legionella pneumophila Philadelphia-1 in cultured peritoneal macrophages and its correlation to susceptibility of animals. Can J Microbiol. 1986 May;32(5):438–442. doi: 10.1139/m86-083. [DOI] [PubMed] [Google Scholar]
- Yoshida S., Mizuguchi Y., Nikaido Y., Mitsuyama M., Nomoto K. Fate of Legionella pneumophila Philadelphia-1 strain in resident, elicited, activated, and immune peritoneal macrophages of guinea pigs. Infect Immun. 1987 Oct;55(10):2477–2482. doi: 10.1128/iai.55.10.2477-2482.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zlotnik A., Roberts W. K., Vasil A., Blumenthal E., Larosa F., Leibson H. J., Endres R. O., Graham S. D., Jr, White J., Hill J. Coordinate production by a T cell hybridoma of gamma interferon and three other lymphokine activities: multiple activities of a single lymphokine? J Immunol. 1983 Aug;131(2):794–800. [PubMed] [Google Scholar]
