Abstract
Bone marrow-derived cultured macrophages were infected with Mycobacterium leprae. The bacteria were either used as freshly isolated organisms or incubated with M. leprae antiserum (1:5) for 30 min prior to phagocytosis. Immediately after inoculation (1 to 4 h) and at 1 to 8 days later, macrophages were stained for acid phosphatase activity to assess fusions between phagosomes and lysosomes. Inhibition of fusions was essentially apparent as an early event, which was partially reversed by antiserum treatment of the bacteria, suggesting a role for M. leprae immunogenic surface components in this early phenomenon. Later incubation times (1 to 8 days) did not show any considerable difference between antiserum-treated and nontreated bacteria. The formation of an electron-transparent zone around phagocytized bacteria and its role in phagosome-lysosome fusion was investigated, and a direct relationship could not be established.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong J. A., Hart P. D. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med. 1975 Jul 1;142(1):1–16. doi: 10.1084/jem.142.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- David H. L., Rastogi N., Frehel C., Gheorghiu M. Reduction of potassium tellurite and ATP content in Mycobacterium leprae. Ann Microbiol (Paris) 1982 Jul-Aug;133(1):129–139. [PubMed] [Google Scholar]
- Draper P., Rees R. J. Electron-transparent zone of mycobacteria may be a defence mechanism. Nature. 1970 Nov 28;228(5274):860–861. doi: 10.1038/228860a0. [DOI] [PubMed] [Google Scholar]
- Frehel C., Ryter A., Rastogi N., David H. The electron-transparent zone in phagocytized Mycobacterium avium and other mycobacteria: formation, persistence and role in bacterial survival. Ann Inst Pasteur Microbiol. 1986 Nov-Dec;137B(3):239–257. doi: 10.1016/s0769-2609(86)80115-6. [DOI] [PubMed] [Google Scholar]
- Frehel C., de Chastellier C., Lang T., Rastogi N. Evidence for inhibition of fusion of lysosomal and prelysosomal compartments with phagosomes in macrophages infected with pathogenic Mycobacterium avium. Infect Immun. 1986 Apr;52(1):252–262. doi: 10.1128/iai.52.1.252-262.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goren M. B., D'Arcy Hart P., Young M. R., Armstrong J. A. Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2510–2514. doi: 10.1073/pnas.73.7.2510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hart P. D., Young M. R., Jordan M. M., Perkins W. J., Geisow M. J. Chemical inhibitors of phagosome-lysosome fusion in cultured macrophages also inhibit saltatory lysosomal movements. A combined microscopic and computer study. J Exp Med. 1983 Aug 1;158(2):477–492. doi: 10.1084/jem.158.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katoh M. Studies of lysosomal enzymes in macrophages. III. Lysosomal enzyme activities in cultured macrophages infected with some species of mycobacteria. Hiroshima J Med Sci. 1981 Jun;30(2):99–107. [PubMed] [Google Scholar]
- Levy L., Ng H., Evans M. J., Krahenbuhl J. L. Susceptibility of thymectomized and irradiated mice to challenge with several organisms and the effect of dapsone on infection with Mycobacterium leprae. Infect Immun. 1975 May;11(5):1122–1132. doi: 10.1128/iai.11.5.1122-1132.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papa F. P., Rauzier J. Y., David H. L. Occurrence of antigen BCG 60 in leprosy derived corynebacteria and other coryneforms. Acta Leprol. 1984 Oct-Dec;2(2-4):351–358. [PubMed] [Google Scholar]
- Rook G. A. The immunology of leprosy. Tubercle. 1983 Dec;64(4):297–312. doi: 10.1016/0041-3879(83)90028-4. [DOI] [PubMed] [Google Scholar]
- Roth J., Bendayan M., Orci L. Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J Histochem Cytochem. 1978 Dec;26(12):1074–1081. doi: 10.1177/26.12.366014. [DOI] [PubMed] [Google Scholar]
- Ryter A., Frehel C., Rastogi N., David H. L. Macrophage interaction with mycobacteria including M. leprae. Acta Leprol. 1984 Oct-Dec;2(2-4):211–226. [PubMed] [Google Scholar]
- Sansonetti P., Lagrange P. H. The immunology of leprosy: speculations on the leprosy spectrum. Rev Infect Dis. 1981 May-Jun;3(3):422–469. doi: 10.1093/clinids/3.3.422. [DOI] [PubMed] [Google Scholar]
- Sibley L. D., Franzblau S. G., Krahenbuhl J. L. Intracellular fate of Mycobacterium leprae in normal and activated mouse macrophages. Infect Immun. 1987 Mar;55(3):680–685. doi: 10.1128/iai.55.3.680-685.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tereletsky M. J., Barrow W. W. Postphagocytic detection of glycopeptidolipids associated with the superficial L1 layer of Mycobacterium intracellulare. Infect Immun. 1983 Sep;41(3):1312–1321. doi: 10.1128/iai.41.3.1312-1321.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]