Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1987 Dec;55(12):3221–3224. doi: 10.1128/iai.55.12.3221-3224.1987

Fungicidal mechanisms of activated macrophages: evidence for nonoxidative mechanisms for killing of Blastomyces dermatitidis.

E Brummer 1, D A Stevens 1
PMCID: PMC260056  PMID: 3316037

Abstract

The mechanism(s) by which lymphokine-activated peritoneal macrophages kill Blastomyces dermatitidis was studied. Resident peritoneal macrophages from BALB/cByJ mice, when treated overnight with lymph node cells plus concanavalin A, supernatants from concanavalin A-stimulated spleen cells, or recombinant gamma interferon, were then able to kill a virulent B. dermatitidis isolate (ATCC 26199) (at levels of 25% +/- 4%, 28% +/- 8%, and 21% +/- 5%, respectively). Killing was not significantly decreased or enhanced in the presence of superoxide dismutase (450 U/ml), catalase (20,000 U/ml), dimethyl sulfoxide (300 mM), or azide (1 mM). Viable B. dermatitidis elicited a brisk oxidative burst and superoxide anion production in activated macrophages as measured by lucigenin-enhanced chemiluminescence, e.g., 10(4) cpm. However, these responses were not significantly different from those of control macrophages. Luminol-enhanced chemiluminescence responses by activated or control macrophages were meager (less than or equal to 10(2) cpm). These results indicate that activated macrophages kill B. dermatitidis by a mechanism(s) independent of products of the oxidative burst.

Full text

PDF
3221

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. C., Loose L. D. Phagocytic activation of a luminol-dependent chemiluminescence in rabbit alveolar and peritoneal macrophages. Biochem Biophys Res Commun. 1976 Mar 8;69(1):245–252. doi: 10.1016/s0006-291x(76)80299-9. [DOI] [PubMed] [Google Scholar]
  2. Beaman L., Benjamini E., Pappagianis D. Activation of macrophages by lymphokines: enhancement of phagosome-lysosome fusion and killing of Coccidioides immitis. Infect Immun. 1983 Mar;39(3):1201–1207. doi: 10.1128/iai.39.3.1201-1207.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhardwaj N., Nash T. W., Horwitz M. A. Interferon-gamma-activated human monocytes inhibit the intracellular multiplication of Legionella pneumophila. J Immunol. 1986 Oct 15;137(8):2662–2669. [PubMed] [Google Scholar]
  4. Brummer E., Morrison C. J., Stevens D. A. Recombinant and natural gamma-interferon activation of macrophages in vitro: different dose requirements for induction of killing activity against phagocytizable and nonphagocytizable fungi. Infect Immun. 1985 Sep;49(3):724–730. doi: 10.1128/iai.49.3.724-730.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brummer E., Sugar A. M., Stevens D. A. Activation of peritoneal macrophages by concanavalin A or Mycobacterium bovis BCG for fungicidal activity against Blastomyces dermatitidis and effect of specific antibody and complement. Infect Immun. 1983 Feb;39(2):817–822. doi: 10.1128/iai.39.2.817-822.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brummer E., Sugar A. M., Stevens D. A. Enhanced oxidative burst in immunologically activated but not elicited polymorphonuclear leukocytes correlates with fungicidal activity. Infect Immun. 1985 Aug;49(2):396–401. doi: 10.1128/iai.49.2.396-401.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cole P. Activation of mouse peritoneal cells to kill Listeria monocytogenes by T-lymphocyte products. Infect Immun. 1975 Jul;12(1):36–41. doi: 10.1128/iai.12.1.36-41.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Minkenberg I., Ferber E. Lucigenin-dependent chemiluminescence as a new assay for NAD(P)H-oxidase activity in particulate fractions of human polymorphonuclear leukocytes. J Immunol Methods. 1984 Jun 8;71(1):61–67. doi: 10.1016/0022-1759(84)90206-0. [DOI] [PubMed] [Google Scholar]
  9. Murray H. W., Rubin B. Y., Carriero S. M., Harris A. M., Jaffee E. A. Human mononuclear phagocyte antiprotozoal mechanisms: oxygen-dependent vs oxygen-independent activity against intracellular Toxoplasma gondii. J Immunol. 1985 Mar;134(3):1982–1988. [PubMed] [Google Scholar]
  10. Murray H. W., Rubin B. Y., Rothermel C. D. Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon-gamma is the activating lymphokine. J Clin Invest. 1983 Oct;72(4):1506–1510. doi: 10.1172/JCI111107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nacy C. A., Leonard E. J., Meltzer M. S. Macrophages in resistance to rickettsial infections: characterization of lymphokines that induce rickettsiacidal activity in macrophages. J Immunol. 1981 Jan;126(1):204–207. [PubMed] [Google Scholar]
  12. Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pace J. L., Russell S. W., Torres B. A., Johnson H. M., Gray P. W. Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing. J Immunol. 1983 May;130(5):2011–2013. [PubMed] [Google Scholar]
  14. Peterson P. K., Gaziano E., Suh H. J., Devalon M., Peterson L., Keane W. F. Antimicrobial activities of dialysate-elicited and resident human peritoneal macrophages. Infect Immun. 1985 Jul;49(1):212–218. doi: 10.1128/iai.49.1.212-218.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rothermel C. D., Rubin B. Y., Jaffe E. A., Murray H. W. Oxygen-independent inhibition of intracellular Chlamydia psittaci growth by human monocytes and interferon-gamma-activated macrophages. J Immunol. 1986 Jul 15;137(2):689–692. [PubMed] [Google Scholar]
  16. Segal G. P., Lehrer R. I., Selsted M. E. In vitro effect of phagocyte cationic peptides on Coccidioides immitis. J Infect Dis. 1985 May;151(5):890–894. doi: 10.1093/infdis/151.5.890. [DOI] [PubMed] [Google Scholar]
  17. Sugar A. M., Chahal R. S., Brummer E., Stevens D. A. Susceptibility of Blastomyces dermatitidis strains to products of oxidative metabolism. Infect Immun. 1983 Sep;41(3):908–912. doi: 10.1128/iai.41.3.908-912.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Urban J. L., Shepard H. M., Rothstein J. L., Sugarman B. J., Schreiber H. Tumor necrosis factor: a potent effector molecule for tumor cell killing by activated macrophages. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5233–5237. doi: 10.1073/pnas.83.14.5233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yamamoto S., Leonard E. J., Meltzer M. Molecular weight, isoelectric point, and stability of a murine lymphokine that induces macrophage tumoricidal activity. J Reticuloendothel Soc. 1983 May;33(5):343–351. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES