Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jul 5;64(Pt 8):o1425. doi: 10.1107/S1600536808020175

Diethyl [2,2,2-trifluoro-1-phenyl­sulfonyl­amino-1-(trifluoro­meth­yl)eth­yl]phospho­nate

Sanjeeva J Wijeyesakere a, Faik A Nasser a, Jeff W Kampf b, Alexey Y Aksinenko c, Vladimir B Sokolov c, Vladimir V Malygin c,, Galina F Makhaeva c, Rudy J Richardson a,*
PMCID: PMC2600860  NIHMSID: NIHMS63776  PMID: 19079747

Abstract

The title compound, C13H16F6NO5PS, is of inter­est with respect to inhibition of serine hydro­lases. Its structure contains a 1.8797 (13) Å P—C bond and two inter­molecular N—H⋯O=P hydrogen bonds, resulting in centrosymmetric dimers. An intra­molecular N—H⋯O=P hydrogen bond is also present.

Related literature

For related literature, see: Chekhlov et al. (1995); Makhaeva et al. (2005); Adams et al. (2008); Chen et al. (2008); Guo et al. (2008); Kachkovskyi & Kolodiazhnyi (2007); Liu et al. (1995).graphic file with name e-64-o1425-scheme1.jpg

Experimental

Crystal data

  • C13H16F6NO5PS

  • M r = 443.3

  • Monoclinic, Inline graphic

  • a = 11.6913 (15) Å

  • b = 10.1375 (13) Å

  • c = 15.5955 (19) Å

  • β = 93.264 (2)°

  • V = 1845.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 113 (2) K

  • 0.60 × 0.42 × 0.40 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.820, T max = 0.874

  • 20001 measured reflections

  • 4568 independent reflections

  • 4027 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.082

  • S = 1.03

  • 4568 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020175/si2094sup1.cif

e-64-o1425-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020175/si2094Isup2.hkl

e-64-o1425-Isup2.hkl (223.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.88 2.34 2.8730 (14) 119
N1—H1A⋯O3i 0.88 2.00 2.8324 (14) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank NIH (ES07062), CRDF (RB2-2035 and RB2-2488) and ARO (DAAD19-02-1-0388) for financial support.

supplementary crystallographic information

Comment

The title compound is a member of the fluorinated α-aminophosphonate (FAP) group of compounds [(RO)2P(O)C(CF3)2NHS(O)2C6H5; R = CH3, C2H5, C3H7, iso-C3H7, n-C4H9, iso-C4H9, iso-C5H11, n-C5H11, and n-C6H13] that have been synthesized and used in biochemical studies as inhibitors of serine hydrolases (Chekhlov et al., 1995; Makhaeva et al., 2005). These studies suggested the hypothesis that inhibition of serine hydrolases by FAP compounds occurs via scission of the P—C bond to organophosphorylate the active site serine (Makhaeva et al., 2005). Although P—C bonds are exceptionally stable in most phosphonates, enzymes such as bacterial carbon-phosphorus lyase are capable of catalyzing their cleavage, thus providing a potential method for destroying toxic phosphonates that might otherwise accumulate in the environment (Adams et al., 2008). Moreover, the structure of diisopentyl-FAP revealed a 1.888 (4) Å P—C bond (Chekhlov et al., 1995), which was calculated to be longer and weaker than P—C bonds in phosphonates lacking adjacent –CF3 groups (Makhaeva et al., 2005).

To provide a further test of our hypothesis, the X-ray crystal structure of the title compound was determined (Fig 1). The title compound contains an intramolecular P=O···H—N hydrogen bond (Fig. 1; Table 1), and in the crystal it is linked via two intermolecular P=O···H—N hydrogen bonds to form inversion-related dimers (Fig. 2; Table 1). As predicted, the structure of diethyl-FAP revealed an elongated P—C bond that was 1.8797 (13) Å in length, which is not significantly different from the 1.888 (4) Å P—C bond in diisopentyl-FAP (Chekhlov et al., 1995). This is long compared to P—C bond lengths of 1.822 (2) Å (Chen et al., 2008), 1.803 (4) Å (Guo et al., 2008), 1.818 (5) Å (Kachkovskyi and Kolodiazhnyi, 2007), and 1.805 (6) Å (Liu et al., 1995) reported for the crystal structures of a variety of dialkyl phosphonates lacking α-CF3 groups. The long P—C bond in diethyl-FAP is expected to be labile and would explain the ability of the compound to organophosphorylate and inhibit serine hydrolases as well as their ability to undergo hydrolysis to yield phosphoric acid diethyl ester and the amide, (CF3)2CH–NH–SO2–C6H5 (Makhaeva et al., 2005).

Experimental

The title compound was synthesized by mixing ether solutions of equimolar amounts of diethylphosphite and the sulfonylimine of hexafluoroacetone followed by subsequent recrystallization from petroleum ether.

Colorless plates of the ethyl analog were grown via evaporation from methanol at 22 °C. A crystal with dimensions of 0.60 × 0.42 × 0.40 mm was cut from a larger crystal and mounted on a standard Bruker SMART CCD-based X-ray diffractometer equipped with a LT-2 low temperature device and normal focus Mo-target X-ray tube (λ = 0.71073 Å) operated at 2000 W power (50 kV, 40 mA). X-ray intensities were measured at 113 (2) K with the detector placed 4.980 cm from the crystal. A total of 3030 frames were collected with a scan width of 0.3° in ω and φ and an exposure time of 20 sec/frame.

Data integration yielded a total of 20001 reflections to a maximum 2θ value of 56.58° of which 4568 were independent and 4343 were greater than 2 σ(I). The final cell constants were based on the xyz centroids of 6691 reflections above 10 σ(I).

Refinement

The hydrogen atoms were treated as riding, with N—H distance = 0.88 Å and C—H distances in the range 0.95–0.99 Å with Uiso(H) = 1.2Ueq(N,C), 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

Structure of diethyl-FAP showing the atom numbering scheme. The intramolecular hydrogen bond is shown as a dashed line. Ellipsoids represent 50% occupancy.

Fig. 2.

Fig. 2.

The dimer of diethyl-FAP, showing the intermolecular hydrogen bonds and the atom labelling scheme.

Crystal data

C13H16F6NO5PS F000 = 904
Mr = 443.3 Dx = 1.596 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6567 reflections
a = 11.6913 (15) Å θ = 2.9–28.3º
b = 10.1375 (13) Å µ = 0.35 mm1
c = 15.5955 (19) Å T = 113 (2) K
β = 93.264 (2)º Plate, colourless
V = 1845.4 (4) Å3 0.60 × 0.42 × 0.40 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 4568 independent reflections
Radiation source: fine-focus sealed tube 4027 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.022
T = 113(2) K θmax = 28.3º
φ and ω scans θmin = 2.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003) h = −15→15
Tmin = 0.820, Tmax = 0.874 k = −13→13
20001 measured reflections l = −20→20

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full   w = 1/[σ2(Fo2) + (0.0427P)2 + 0.6948P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029 (Δ/σ)max = 0.001
wR(F2) = 0.082 Δρmax = 0.34 e Å3
S = 1.03 Δρmin = −0.33 e Å3
4568 reflections Extinction correction: none
246 parameters

Special details

Experimental. 2103 frames × 20 sec @ 4.980 cm; 0.3 ° scans in ω & φ
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.64284 (3) 0.17485 (3) 0.04487 (2) 0.02726 (9)
S1 0.33796 (3) 0.15018 (3) 0.174771 (18) 0.02622 (8)
N1 0.46059 (9) 0.12554 (10) 0.13045 (6) 0.0247 (2)
H1A 0.4569 0.0699 0.0870 0.030*
F1 0.73735 (8) 0.14398 (10) 0.24829 (6) 0.0445 (2)
F2 0.66649 (8) −0.02537 (9) 0.17986 (5) 0.0429 (2)
F3 0.57711 (8) 0.05961 (9) 0.28299 (5) 0.0412 (2)
F4 0.56725 (9) 0.33003 (9) 0.27115 (5) 0.0434 (2)
F5 0.67125 (8) 0.38612 (9) 0.16867 (6) 0.0415 (2)
F6 0.48768 (7) 0.39288 (8) 0.14967 (5) 0.03547 (19)
C1 0.26341 (11) 0.26504 (13) 0.10763 (7) 0.0255 (2)
C2 0.24216 (12) 0.23293 (14) 0.02114 (8) 0.0307 (3)
H2A 0.2676 0.1513 −0.0009 0.037*
C3 0.18337 (14) 0.32241 (16) −0.03191 (9) 0.0398 (3)
H3A 0.1682 0.3022 −0.0909 0.048*
C4 0.14648 (15) 0.44131 (17) 0.00055 (9) 0.0435 (4)
H4A 0.1074 0.5028 −0.0366 0.052*
C5 0.16614 (14) 0.47135 (16) 0.08707 (9) 0.0402 (3)
H5A 0.1391 0.5522 0.1091 0.048*
C6 0.22553 (12) 0.38277 (14) 0.14136 (8) 0.0313 (3)
H6A 0.2399 0.4026 0.2005 0.038*
C7 0.57400 (11) 0.18007 (12) 0.15084 (8) 0.0258 (2)
C8 0.57452 (12) 0.32405 (14) 0.18606 (9) 0.0326 (3)
C9 0.63978 (13) 0.08914 (14) 0.21698 (9) 0.0342 (3)
C10 0.86488 (14) 0.16185 (18) 0.02046 (12) 0.0464 (4)
H10A 0.8876 0.2351 −0.0170 0.056*
H10B 0.8423 0.0853 −0.0161 0.056*
C11 0.96179 (17) 0.1256 (3) 0.08278 (18) 0.0793 (7)
H11A 0.9820 0.2017 0.1194 0.119*
H11B 1.0283 0.0995 0.0512 0.119*
H11C 0.9386 0.0519 0.1186 0.119*
C12 0.50917 (13) 0.29279 (16) −0.07438 (9) 0.0367 (3)
H12A 0.4590 0.3713 −0.0728 0.044*
H12B 0.4613 0.2134 −0.0674 0.044*
C13 0.56368 (16) 0.28690 (17) −0.15912 (10) 0.0455 (4)
H13A 0.6155 0.3622 −0.1640 0.068*
H13B 0.5040 0.2901 −0.2058 0.068*
H13C 0.6071 0.2046 −0.1628 0.068*
O1 0.27788 (9) 0.02744 (10) 0.16554 (6) 0.0339 (2)
O2 0.36007 (9) 0.20787 (10) 0.25771 (5) 0.0346 (2)
O3 0.61539 (8) 0.04887 (9) 0.00278 (6) 0.0311 (2)
O4 0.77052 (9) 0.20205 (12) 0.07141 (7) 0.0435 (3)
O5 0.59785 (9) 0.29985 (10) −0.00394 (6) 0.0348 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.02908 (17) 0.02691 (17) 0.02539 (16) 0.00270 (12) −0.00198 (12) −0.00504 (12)
S1 0.03576 (17) 0.02732 (16) 0.01571 (13) 0.00577 (12) 0.00261 (11) 0.00207 (10)
N1 0.0305 (5) 0.0241 (5) 0.0192 (4) 0.0051 (4) −0.0018 (4) −0.0048 (4)
F1 0.0422 (5) 0.0527 (5) 0.0364 (4) 0.0091 (4) −0.0185 (4) −0.0058 (4)
F2 0.0575 (5) 0.0330 (4) 0.0363 (4) 0.0205 (4) −0.0127 (4) −0.0031 (3)
F3 0.0557 (5) 0.0430 (5) 0.0236 (4) 0.0084 (4) −0.0093 (4) 0.0041 (3)
F4 0.0591 (6) 0.0422 (5) 0.0277 (4) 0.0078 (4) −0.0074 (4) −0.0163 (3)
F5 0.0415 (5) 0.0342 (5) 0.0479 (5) −0.0042 (4) −0.0065 (4) −0.0146 (4)
F6 0.0423 (4) 0.0229 (4) 0.0404 (4) 0.0082 (3) −0.0050 (3) −0.0057 (3)
C1 0.0292 (6) 0.0292 (6) 0.0181 (5) 0.0059 (5) 0.0025 (4) 0.0009 (4)
C2 0.0388 (7) 0.0329 (7) 0.0202 (5) 0.0110 (5) 0.0005 (5) −0.0027 (5)
C3 0.0523 (9) 0.0449 (8) 0.0215 (6) 0.0175 (7) −0.0052 (6) −0.0026 (5)
C4 0.0550 (9) 0.0439 (8) 0.0304 (7) 0.0243 (7) −0.0075 (6) 0.0003 (6)
C5 0.0500 (8) 0.0379 (8) 0.0320 (7) 0.0214 (7) −0.0022 (6) −0.0062 (6)
C6 0.0371 (7) 0.0346 (7) 0.0222 (5) 0.0100 (5) 0.0012 (5) −0.0042 (5)
C7 0.0319 (6) 0.0237 (6) 0.0210 (5) 0.0065 (5) −0.0062 (4) −0.0044 (4)
C8 0.0386 (7) 0.0287 (6) 0.0294 (6) 0.0053 (5) −0.0067 (5) −0.0091 (5)
C9 0.0412 (7) 0.0339 (7) 0.0261 (6) 0.0100 (6) −0.0105 (5) −0.0032 (5)
C10 0.0367 (8) 0.0492 (9) 0.0545 (10) −0.0068 (7) 0.0128 (7) −0.0050 (7)
C11 0.0352 (9) 0.110 (2) 0.0913 (17) 0.0118 (11) −0.0041 (10) −0.0132 (15)
C12 0.0365 (7) 0.0387 (8) 0.0345 (7) 0.0026 (6) −0.0009 (5) 0.0107 (6)
C13 0.0660 (11) 0.0390 (8) 0.0318 (7) 0.0067 (7) 0.0048 (7) 0.0056 (6)
O1 0.0433 (5) 0.0309 (5) 0.0280 (4) −0.0005 (4) 0.0077 (4) 0.0054 (4)
O2 0.0497 (6) 0.0391 (5) 0.0150 (4) 0.0111 (4) 0.0014 (4) −0.0011 (4)
O3 0.0386 (5) 0.0286 (5) 0.0259 (4) 0.0044 (4) 0.0006 (4) −0.0070 (4)
O4 0.0289 (5) 0.0543 (7) 0.0466 (6) 0.0028 (5) −0.0028 (4) −0.0166 (5)
O5 0.0443 (6) 0.0288 (5) 0.0308 (5) −0.0027 (4) −0.0012 (4) 0.0026 (4)

Geometric parameters (Å, °)

P1—O3 1.4632 (10) C4—C5 1.390 (2)
P1—O4 1.5509 (11) C4—H4A 0.9500
P1—O5 1.5545 (10) C5—C6 1.3923 (19)
P1—C7 1.8797 (13) C5—H5A 0.9500
S1—O2 1.4296 (9) C6—H6A 0.9500
S1—O1 1.4321 (11) C7—C9 1.5539 (17)
S1—N1 1.6458 (11) C7—C8 1.5594 (17)
S1—C1 1.7629 (12) C10—O4 1.4540 (19)
N1—C7 1.4549 (16) C10—C11 1.496 (3)
N1—H1A 0.8800 C10—H10A 0.9900
F1—C9 1.3361 (17) C10—H10B 0.9900
F2—C9 1.3419 (16) C11—H11A 0.9800
F3—C9 1.3313 (18) C11—H11B 0.9800
F4—C8 1.3359 (16) C11—H11C 0.9800
F5—C8 1.3354 (18) C12—O5 1.4687 (17)
F6—C8 1.3320 (16) C12—C13 1.501 (2)
C1—C6 1.3870 (18) C12—H12A 0.9900
C1—C2 1.3960 (16) C12—H12B 0.9900
C2—C3 1.3838 (18) C13—H13A 0.9800
C2—H2A 0.9500 C13—H13B 0.9800
C3—C4 1.386 (2) C13—H13C 0.9800
C3—H3A 0.9500
O3—P1—O4 117.26 (6) F6—C8—F5 107.48 (12)
O3—P1—O5 115.62 (6) F6—C8—F4 108.02 (11)
O4—P1—O5 106.23 (6) F5—C8—F4 106.43 (11)
O3—P1—C7 108.97 (6) F6—C8—C7 110.65 (10)
O4—P1—C7 102.36 (6) F5—C8—C7 110.84 (11)
O5—P1—C7 104.94 (6) F4—C8—C7 113.15 (11)
O2—S1—O1 120.58 (6) F3—C9—F1 107.88 (11)
O2—S1—N1 108.97 (6) F3—C9—F2 106.91 (12)
O1—S1—N1 105.06 (6) F1—C9—F2 107.63 (12)
O2—S1—C1 108.97 (6) F3—C9—C7 111.92 (11)
O1—S1—C1 106.92 (6) F1—C9—C7 112.07 (12)
N1—S1—C1 105.30 (5) F2—C9—C7 110.20 (10)
C7—N1—S1 130.95 (8) O4—C10—C11 106.50 (16)
C7—N1—H1A 114.5 O4—C10—H10A 110.4
S1—N1—H1A 114.5 C11—C10—H10A 110.4
C6—C1—C2 121.60 (11) O4—C10—H10B 110.4
C6—C1—S1 120.05 (9) C11—C10—H10B 110.4
C2—C1—S1 118.34 (10) H10A—C10—H10B 108.6
C3—C2—C1 118.67 (12) C10—C11—H11A 109.5
C3—C2—H2A 120.7 C10—C11—H11B 109.5
C1—C2—H2A 120.7 H11A—C11—H11B 109.5
C2—C3—C4 120.41 (13) C10—C11—H11C 109.5
C2—C3—H3A 119.8 H11A—C11—H11C 109.5
C4—C3—H3A 119.8 H11B—C11—H11C 109.5
C3—C4—C5 120.51 (13) O5—C12—C13 110.09 (13)
C3—C4—H4A 119.7 O5—C12—H12A 109.6
C5—C4—H4A 119.7 C13—C12—H12A 109.6
C4—C5—C6 119.89 (13) O5—C12—H12B 109.6
C4—C5—H5A 120.1 C13—C12—H12B 109.6
C6—C5—H5A 120.1 H12A—C12—H12B 108.2
C1—C6—C5 118.90 (12) C12—C13—H13A 109.5
C1—C6—H6A 120.5 C12—C13—H13B 109.5
C5—C6—H6A 120.5 H13A—C13—H13B 109.5
N1—C7—C9 109.28 (11) C12—C13—H13C 109.5
N1—C7—C8 114.70 (10) H13A—C13—H13C 109.5
C9—C7—C8 109.24 (10) H13B—C13—H13C 109.5
N1—C7—P1 103.16 (8) C10—O4—P1 123.57 (10)
C9—C7—P1 110.27 (9) C12—O5—P1 122.10 (9)
C8—C7—P1 110.04 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O3 0.88 2.34 2.8730 (14) 119
N1—H1A···O3i 0.88 2.00 2.8324 (14) 158

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2094).

References

  1. Adams, M. A., Luo, Y., Hove-Jensen, B., He, S.-M., van Staalduinen, L. M., Zechel, D. L. & Jia, Z. (2008). J. Bacteriol.190, 1072–1083. [DOI] [PMC free article] [PubMed]
  2. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chekhlov, A. N., Aksinenko, A. Y., Sokolov, V. B. & Martynov, I. V. (1995). Dokl. Chem.345, 296–299.
  5. Chen, C., Jin, W. & Li, X. (2008). Acta Cryst. E64, o144. [DOI] [PMC free article] [PubMed]
  6. Guo, Y.-C., Wang, X.-F. & Ding, Y. (2008). Acta Cryst. E64, o384. [DOI] [PMC free article] [PubMed]
  7. Kachkovskyi, G. O. & Kolodiazhnyi, O. I. (2007). Tetrahedron, 63, 12576–12582.
  8. Liu, X.-L., Zhou, Y., Li, W.-Z., Fan, Z., Miao, F.-M., Mao, L.-J. & Chen, R.-Y. (1995). Acta Cryst. C51, 2350–2352.
  9. Makhaeva, G. F., Malygin, V. V., Aksinenko, A. Y., Sokolov, V. B., Strakhova, N. N., Rasdolsky, A. N., Richardson, R. J. & Martynov, I. V. (2005). Dokl. Biochem. Biophys.400, 831–835. [DOI] [PubMed]
  10. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020175/si2094sup1.cif

e-64-o1425-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020175/si2094Isup2.hkl

e-64-o1425-Isup2.hkl (223.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES