Abstract
The peripheral blood mononuclear cells (PBMC) from 5 individuals immune to typhus group rickettsiae and from 13 nonimmune individuals were stimulated in vitro for 7 days with typhus group rickettsial antigen (TGRA). At the end of day 7, lysis of the natural killer (NK)-susceptible target K562 by these PBMC was determined. As controls, PBMC from both groups of donors were cultured in vitro for 7 days without antigen or were freshly isolated, and lysis of the K562 target was determined. There was no significant difference between the level of NK activity in freshly isolated PBMC from immune and nonimmune donors. PBMC from immune donors which were stimulated with antigen for 7 days exhibited significantly greater NK activity than did the control population, which was cultured for 7 days without antigen. PBMC from immune donors which were stimulated with TGRA demonstrated significantly higher NK activity than the same PBMC stimulated with antigen derived from an antigenically unrelated rickettsia, Coxiella burnetii. There was no significant difference, however, in the level of NK activity of nonimmune antigen-stimulated PBMC compared with that of the same PBMC population cultured without antigen. Most of the antigen-stimulated NK activity was mediated by Leu-11-positive cells as determined by electronic cell sorting. The ability of TGRA to sustain the NK activity of PBMC from immune donors was abolished when the T4/Leu-3-positive population of lymphocytes was eliminated by positive or negative selection prior to antigen stimulation. The ability of TGRA to sustain the NK activity of PBMC from immune donors was also significantly decreased in the presence of antibodies against human interleukin-2. The results suggest that the activity of human NK cells can be sustained in vitro by antigen-specific T helper cells and that the effect of the T helper cell is mediated, at least in part, by interleukin-2.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biddison W. E., Sharrow S. O., Shearer G. M. T cell subpopulations required for the human cytotoxic T lymphocyte response to influenza virus: evidence for T cell help. J Immunol. 1981 Aug;127(2):487–491. [PubMed] [Google Scholar]
- Bishop G. A., Glorioso J. C., Schwartz S. A. Relationship between expression of herpes simplex virus glycoproteins and susceptibility of target cells to human natural killer activity. J Exp Med. 1983 May 1;157(5):1544–1561. doi: 10.1084/jem.157.5.1544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britten V., Robins R. A., Baldwin R. W. In vitro activation of natural killer-like cytotoxicity by specifically in vivo primed T-helper lymphocytes in the rat. Immunology. 1984 May;52(1):31–39. [PMC free article] [PubMed] [Google Scholar]
- Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
- Carl M., Dasch G. A. Characterization of human cytotoxic lymphocytes directed against cells infected with typhus group rickettsiae: evidence for lymphokine activation of effectors. J Immunol. 1986 Apr 1;136(7):2654–2661. [PubMed] [Google Scholar]
- Crist A. E., Jr, Wisseman C. L., Jr, Murphy J. R. Characteristics of lymphoid cells that adoptively transfer immunity to Rickettsia mooseri infection in mice. Infect Immun. 1984 Apr;44(1):55–60. doi: 10.1128/iai.44.1.55-60.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halle S., Dasch G. A. Use of a sensitive microplate enzyme-linked immunosorbent assay in a retrospective serological analysis of a laboratory population at risk to infection with typhus group rickettsiae. J Clin Microbiol. 1980 Sep;12(3):343–350. doi: 10.1128/jcm.12.3.343-350.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herberman R. B., Djeu J., Kay H. D., Ortaldo J. R., Riccardi C., Bonnard G. D., Holden H. T., Fagnani R., Santoni A., Puccetti P. Natural killer cells: characteristics and regulation of activity. Immunol Rev. 1979;44:43–70. doi: 10.1111/j.1600-065x.1979.tb00267.x. [DOI] [PubMed] [Google Scholar]
- Lanier L. L., Le A. M., Phillips J. H., Warner N. L., Babcock G. F. Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol. 1983 Oct;131(4):1789–1796. [PubMed] [Google Scholar]
- Masucci M. G., Klein E., Argov S. Disappearance of the NK effect after explantation of lymphocytes and generation of similar nonspecific cytotoxicity correlated to the level of blastogenesis in activated cultures. J Immunol. 1980 May;124(5):2458–2463. [PubMed] [Google Scholar]
- McMichael A. J., Gotch F. M., Hildreth J. E. Lysis of allogeneic human lymphocytes by nonspecifically activated T-like cells. Eur J Immunol. 1982 Dec;12(12):1002–1005. doi: 10.1002/eji.1830121204. [DOI] [PubMed] [Google Scholar]
- Misiti J., Dasch G. A. In vitro antigen-specific antibody response to the species-specific surface protein antigens of typhus group rickettsiae by human peripheral blood mononuclear cells: generation of an antigen-dependent suppressor T cell. J Immunol. 1985 Apr;134(4):2689–2694. [PubMed] [Google Scholar]
- Murphy J. R., Wisseman C. L., Jr, Fiset P. Mechanisms of immunity in typhus infection: some characteristics of Rickettsia mooseri infection of guinea pigs. Infect Immun. 1978 Aug;21(2):417–424. doi: 10.1128/iai.21.2.417-424.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pawelec G. P., Hadam M. R., Ziegler A., Lohmeyer J., Rehbein A., Kumbier I., Wernet P. Long-term culture, cloning, and surface markers of mixed leukocyte culture-derived human T lymphocytes with natural killer-like cytotoxicity. J Immunol. 1982 Apr;128(4):1892–1896. [PubMed] [Google Scholar]
- Perussia B., Starr S., Abraham S., Fanning V., Trinchieri G. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immunol. 1983 May;130(5):2133–2141. [PubMed] [Google Scholar]
- Phillips W. H., Ortaldo J. R., Herberman R. B. Selective depletion of human natural killer cells on monolayers of target cells. J Immunol. 1980 Nov;125(5):2322–2327. [PubMed] [Google Scholar]
- Seeley J., Svedmyr E., Weiland O., Klein G., Moller E., Eriksson E., Andersson K., van der Waal L. Epstein Barr virus selective T cells in infectious mononucleosis are not restricted to HLA-A and B antigens. J Immunol. 1981 Jul;127(1):293–300. [PubMed] [Google Scholar]
- Seki H., Ueno Y., Taga K., Matsuda A., Miyawaki T., Taniguchi N. Mode of in vitro augmentation of natural killer cell activity by recombinant human interleukin 2: a comparative study of Leu-11+ and Leu-11- cell populations in cord blood and adult peripheral blood. J Immunol. 1985 Oct;135(4):2351–2356. [PubMed] [Google Scholar]
- Timonen T., Saksela E. Isolation of human NK cells by density gradient centrifugation. J Immunol Methods. 1980;36(3-4):285–291. doi: 10.1016/0022-1759(80)90133-7. [DOI] [PubMed] [Google Scholar]
- Trinchieri G., Matsumoto-Kobayashi M., Clark S. C., Seehra J., London L., Perussia B. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med. 1984 Oct 1;160(4):1147–1169. doi: 10.1084/jem.160.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Velardi A., Grossi C. E., Cooper M. D. A large subpopulation of lymphocytes with T helper phenotype (Leu-3/T4+) exhibits the property of binding to NK cell targets and granular lymphocyte morphology. J Immunol. 1985 Jan;134(1):58–64. [PubMed] [Google Scholar]
- Weigent D. A., Stanton G. J., Johnson H. M. Interleukin 2 enhances natural killer cell activity through induction of gamma interferon. Infect Immun. 1983 Sep;41(3):992–997. doi: 10.1128/iai.41.3.992-997.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams J. C., Cantrell J. L. Biological and immunological properties of Coxiella burnetii vaccines in C57BL/10ScN endotoxin-nonresponder mice. Infect Immun. 1982 Mar;35(3):1091–1102. doi: 10.1128/iai.35.3.1091-1102.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodman D. R., Weiss E., Dasch G. A., Bozeman F. M. Biological properties of Rickettsia prowazekii strains isolated from flying squirrels. Infect Immun. 1977 Jun;16(3):853–860. doi: 10.1128/iai.16.3.853-860.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
