Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1986 Nov;54(2):415–420. doi: 10.1128/iai.54.2.415-420.1986

Hemolysin production and cloning of two hemolysin determinants from classical Vibrio cholerae.

K Richardson, J Michalski, J B Kaper
PMCID: PMC260177  PMID: 3021628

Abstract

The hemolytic activity of 20 classical and 3 El Tor strains of V. cholerae O1 was examined phenotypically and genetically. The El Tor strains lysed bovine, chicken, human, rabbit, and sheep erythrocytes (RBCs), while the classical strains lysed only chicken and rabbit RBCs. The assay was done with RBCs in Tris-NaCl buffer, since phosphate-buffered saline was found to inhibit hemolytic activity. Hemolytic activity in culture supernatants from El Tor strains was more sensitive to heat inactivation than that in supernatants from the classical strain 395. A gene library of strain 395 was examined for hemolytic activity, and two distinct hemolytic clones were identified. One clone appeared identical to the previously cloned hemolysin structural gene from El Tor V. cholerae, while the other did not hybridize to the El Tor hemolysin probe, had a unique restriction enzyme digestion pattern, and encoded a hemolysin whose activity differed from that of the El Tor hemolysin clones. We suggest that the hemolysin specified by the determinant originally cloned from an El Tor vibrio be designated hemolysin I and the second hemolysin, cloned from the classical vibrio, be designated hemolysin II.

Full text

PDF
415

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett T. J., Blake P. A. Epidemiological usefulness of changes in hemolytic activity of Vibrio cholerae biotype El Tor during the seventh pandemic. J Clin Microbiol. 1981 Jan;13(1):126–129. doi: 10.1128/jcm.13.1.126-129.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  4. Brenner D. J., Fanning G. R., Johnson K. E., Citarella R. V., Falkow S. Polynucleotide sequence relationships among members of Enterobacteriaceae. J Bacteriol. 1969 May;98(2):637–650. doi: 10.1128/jb.98.2.637-650.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DE MOOR C. E. A NON-HAEMOLYTIC EL TOR VIBRIO AS THE CAUSE OF AN OUTBREAK OF PARACHOLERA IN WEST NEW GUINEA. THE EL TOR PROBLEM AND PANDEMIC PARACHOLERA IN THE WEST PACIFIC. Trop Geogr Med. 1963 Jun;15:97–107. [PubMed] [Google Scholar]
  6. Finkelstein R. A. Preselection of hemolytic variants of el tor vibrios. J Bacteriol. 1966 Aug;92(2):513–514. doi: 10.1128/jb.92.2.513-514.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gallut J. La septième pandémie cholérique 1961-1966, 1970. Bull Soc Pathol Exot Filiales. 1971 Sep-Oct;64(5):551–560. [PubMed] [Google Scholar]
  8. Goldberg S. L., Murphy J. R. Cloning and characterization of the hemolysin determinants from Vibrio cholerae RV79(Hly+), RV79(Hly-), and 569B. J Bacteriol. 1985 Apr;162(1):35–41. doi: 10.1128/jb.162.1.35-41.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hohn B., Collins J. A small cosmid for efficient cloning of large DNA fragments. Gene. 1980 Nov;11(3-4):291–298. doi: 10.1016/0378-1119(80)90069-4. [DOI] [PubMed] [Google Scholar]
  10. Honda T., Finkelstein R. A. Purification and characterization of a hemolysin produced by Vibrio cholerae biotype El Tor: another toxic substance produced by cholera vibrios. Infect Immun. 1979 Dec;26(3):1020–1027. doi: 10.1128/iai.26.3.1020-1027.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LIU P. V. Studies on the hemolysin of Vibrio cholerae. J Infect Dis. 1959 May-Jun;104(3):238–252. doi: 10.1093/infdis/104.3.238. [DOI] [PubMed] [Google Scholar]
  12. Moseley S. L., Falkow S. Nucleotide sequence homology between the heat-labile enterotoxin gene of Escherichia coli and Vibrio cholerae deoxyribonucleic acid. J Bacteriol. 1980 Oct;144(1):444–446. doi: 10.1128/jb.144.1.444-446.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sakazaki R., Tamura K., Murase M. Determination of the hemolytic activity of Vibrio cholerae. Jpn J Med Sci Biol. 1971 Apr;24(2):83–91. doi: 10.7883/yoken1952.24.83. [DOI] [PubMed] [Google Scholar]
  14. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  15. von Mechow S., Vaidya A. B., Bramucci M. G. Mapping of a gene that regulates hemolysin production in Vibrio cholerae. J Bacteriol. 1985 Aug;163(2):799–802. doi: 10.1128/jb.163.2.799-802.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES