Abstract
Normal human serum absorbed at 0 degrees C with pneumococcal serotype 1, 12, or 25 lost the ability to support polymorphonuclear leukocyte intracellular killing of some pneumococcal serotypes even if immunoglobulin was provided. The absorbed serum contained no organisms but had residual polysaccharide when measured by counterimmunoelectrophoresis against type-specific antisera. The influence of pneumococcal polysaccharide (PPS) on serum support of intracellular polymorphonuclear leukocyte killing was evaluated. Normal human serum was mixed with PPS serotype 1, 12, or 25 at 0 degrees C for up to 120 min and then used as the opsonic source in standard phagocytic killing assays with serotype 1, 12, or 25. Immediately after mixing, each serum combined with PPS serotype 1, 12, or 25 supported killing of all serotypes tested. With increasing time at 0 degrees C with serotype 1 PPS, serum exhibited a marked progressive decline in killing of serotype 25, a similar but less marked impairment in killing of serotype 12, and essentially no impairment for serotype 1. Serum treated with type 25 PPS did not support killing of type 25, but allowed normal killing of types 1 and 12. Incubation with type 12 PPS impaired opsonization of types 12 and 25, but not 1. Addition of PPS-specific antisera did not restore killing. Residual serum hemolytic activity of classic and alternative complement pathways was not reduced below opsonizing levels after 120 min at 0 degrees C. Furthermore, PPS treatment of normal human serum did not alter the attachment or ingestion of 14C-labeled pneumococci by polymorphonuclear leukocytes. Some serotypes of PPS reacted slowly with serum at 0 degrees C, diminishing its ability to support intracellular killing of pneumococci despite serum hemolytic complement activity. Phagocytosis was not inhibited. Specific antibody did not overcome inactivation. Different requirements for the inactivated factor among serotypes may be a characteristic related to organism virulence.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AUSTRIAN R., GOLD J. PNEUMOCOCCAL BACTEREMIA WITH ESPECIAL REFERENCE TO BACTEREMIC PNEUMOCOCCAL PNEUMONIA. Ann Intern Med. 1964 May;60:759–776. doi: 10.7326/0003-4819-60-5-759. [DOI] [PubMed] [Google Scholar]
- Ahonkhai V. I., Landesman S. H., Fikrig S. M., Schmalzer E. A., Brown A. K., Cherubin C. E., Schiffman G. Failure of pneumococcal vaccine in children with sickle-cell disease. N Engl J Med. 1979 Jul 5;301(1):26–27. doi: 10.1056/NEJM197907053010106. [DOI] [PubMed] [Google Scholar]
- Austrian R., Douglas R. M., Schiffman G., Coetzee A. M., Koornhof H. J., Hayden-Smith S., Reid R. D. Prevention of pneumococcal pneumonia by vaccination. Trans Assoc Am Physicians. 1976;89:184–194. [PubMed] [Google Scholar]
- Bartram C. E., Jr, Crowder J. G., Beeler B., White A. Diagnosis of bacterial diseases by detection of serum antigens by counterimmunoelectrophoresis, sensitivity, and specificity of detecting Pseudomonas and pneumococcal antigens. J Lab Clin Med. 1974 Apr;83(4):591–598. [PubMed] [Google Scholar]
- Broome C. V., Facklam R. R., Fraser D. W. Pneumococcal disease after pneumococcal vaccination: an alternative method to estimate the efficacy of pneumococcal vaccine. N Engl J Med. 1980 Sep 4;303(10):549–552. doi: 10.1056/NEJM198009043031003. [DOI] [PubMed] [Google Scholar]
- Dee T. H., Schiffman G., Sottile M. I., Rytel M. W. Immunologic studies in pneumococcal disease. J Lab Clin Med. 1977 Jun;89(6):1198–1207. [PubMed] [Google Scholar]
- Dhingra R. K., Williams R. C., Jr, Reed W. P. Effects of pneumococcal mucopeptide and capsular polysaccharide on phagocytosis. Infect Immun. 1977 Jan;15(1):169–174. doi: 10.1128/iai.15.1.169-174.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas R. M., Miles H. B. Vaccination against Streptococcus pneumoniae in childhood: lack of demonstrable benefit in young Australian children. J Infect Dis. 1984 Jun;149(6):861–869. doi: 10.1093/infdis/149.6.861. [DOI] [PubMed] [Google Scholar]
- Giebink G. S., Grebner J. V., Kim Y., Quie P. G. Serum opsonic deficiency produced by Streptococcus pneumoniae and by capsular polysaccharide antigens. Yale J Biol Med. 1978 Sep-Oct;51(5):527–538. [PMC free article] [PubMed] [Google Scholar]
- Gray B. M., Converse G. M., 3rd, Dillon H. C., Jr Serotypes of Streptococcus pneumoniae causing disease. J Infect Dis. 1979 Dec;140(6):979–983. doi: 10.1093/infdis/140.6.979. [DOI] [PubMed] [Google Scholar]
- Guckian J. C., Cavallo T., Fine D. P. Opsonization of pneumococci. II. Metabolic effects of a "third" human serum activity that mediates intracellular killing. J Immunol. 1981 Oct;127(4):1666–1670. [PubMed] [Google Scholar]
- Guckian J. C., Christensen G. D., Schweinle J. E., Fine D. P. Opsonization of pneumococci. I. Heat-labile serum activity other than complement is required for killing by human polymorphonuclear leukocytes. J Immunol. 1981 Oct;127(4):1659–1665. [PubMed] [Google Scholar]
- Guckian J. C., Christensen W. D., Fine D. P. Evidence for quantitative variability of bacterial opsonic requirements. Infect Immun. 1978 Mar;19(3):822–826. doi: 10.1128/iai.19.3.822-826.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansman D., Glasgow H., Sturt J., Devitt L., Douglas R. Increased resistance to penicillin of pneumococci isolated from man. N Engl J Med. 1971 Jan 28;284(4):175–177. doi: 10.1056/NEJM197101282840403. [DOI] [PubMed] [Google Scholar]
- Jacobs M. R., Koornhof H. J., Robins-Browne R. M., Stevenson C. M., Vermaak Z. A., Freiman I., Miller G. B., Witcomb M. A., Isaäcson M., Ward J. I. Emergence of multiply resistant pneumococci. N Engl J Med. 1978 Oct 5;299(14):735–740. doi: 10.1056/NEJM197810052991402. [DOI] [PubMed] [Google Scholar]
- Kenny G. E., Wentworth B. B., Beasley R. P., Foy H. M. Correlation of circulating capsular polysaccharide with bacteremia in pneumococcal pneumonia. Infect Immun. 1972 Oct;6(4):431–437. doi: 10.1128/iai.6.4.431-437.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leijh P. C., van den Barselaar M. T., van Zwet T. L., Daha M. R., van Furth R. Requirement of extracellular complement and immunoglobulin for intracellular killing of micro-organisms by human monocytes. J Clin Invest. 1979 Apr;63(4):772–784. doi: 10.1172/JCI109362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mufson M. A., Kruss D. M., Wasil R. E., Metzger W. I. Capsular types and outcome of bacteremic pneumococcal disease in the antibiotic era. Arch Intern Med. 1974 Sep;134(3):505–510. [PubMed] [Google Scholar]
- Nelson B., Ruddy S. Enhancing role of IgG in lysis of rabbit erythrocytes by the alternative pathway of human complement. J Immunol. 1979 May;122(5):1994–1999. [PubMed] [Google Scholar]
- PILLEMER L., BLUM L., LEPOW I. H., WURZ L., TODD E. W. The properdin system and immunity. III. The zymosan assay of properdin. J Exp Med. 1956 Jan 1;103(1):1–13. doi: 10.1084/jem.103.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rytel M. W., Dee T. H., Ferstenfeld J. E., Hensley G. T. Possible pathogenetic role of capsular antigens in fulminant pneumococcal disease with disseminated intravascular coagulation (DIC). Am J Med. 1974 Dec;57(6):889–896. doi: 10.1016/0002-9343(74)90166-1. [DOI] [PubMed] [Google Scholar]
- Shapiro E. D., Clemens J. D. A controlled evaluation of the protective efficacy of pneumococcal vaccine for patients at high risk of serious pneumococcal infections. Ann Intern Med. 1984 Sep;101(3):325–330. doi: 10.7326/0003-4819-101-3-325. [DOI] [PubMed] [Google Scholar]
