Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1987 Jan;55(1):118–122. doi: 10.1128/iai.55.1.118-122.1987

Molecular basis for the pathological actions of Clostridium perfringens iota toxin.

L L Simpson, B G Stiles, H H Zepeda, T D Wilkins
PMCID: PMC260288  PMID: 2878881

Abstract

Clostridium perfringens type E iota toxin is composed of two separate and independent polypeptide chains that act synergistically in mouse lethal assays. The light chain is an enzyme that mono(ADP-ribosyl)ates certain amino acids. The enzyme displays substantial activity when homopoly-L-arginine is used as a substrate, but it shows little activity when polyasparagine, polylysine or polyglutamic acid are used. In keeping with the properties of an ADP-ribosylating enzyme, the toxin possesses the following characteristics. It produces incorporation of radioactivity into polyarginine when adenine-labeled NAD is used, but radioactivity is not incorporated when nicotinamide-labeled NAD is used. Irrespective of labeling, enzymatic activity is accompanied by the release of free nicotinamide. After incorporation of ADP-ribose groups into polyarginine, enzymatic and chemical techniques can be used to release the incorporated material. Snake venom phosphodiesterase releases mainly AMP; hydroxylamine releases AMP and ADP-ribose. The heavy chain of iota toxin has little or no enzyme activity, and it does not substantially affect the enzyme activity of the light chain. The heavy chain may be a binding component that directs the toxin to vulnerable cells. The data suggest that iota toxin is a representative of a novel class of ADP-ribosylating toxins.

Full text

PDF
118

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Bärmann M., Ohishi I., Tsuyama S., Jakobs K. H., Habermann E. Botulinum C2 toxin ADP-ribosylates actin. Nature. 1986 Jul 24;322(6077):390–392. doi: 10.1038/322390a0. [DOI] [PubMed] [Google Scholar]
  2. Brown P. R., Krstulovic A. M., Hartwick R. A. Current state of the art in the HPLC analyses of free nucleotides, nucleosides, and bases in biological fluids. Adv Chromatogr. 1980;18:101–138. [PubMed] [Google Scholar]
  3. CRAIG J. P., MILES A. A. Some properties of the iota-toxin of Clostridium welchii, including its action on capillary permeability. J Pathol Bacteriol. 1961 Apr;81:481–493. doi: 10.1002/path.1700810221. [DOI] [PubMed] [Google Scholar]
  4. Cassel D., Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2669–2673. doi: 10.1073/pnas.75.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chung D. W., Collier R. J. The mechanism of ADP-ribosylation of elongation factor 2 catalyzed by fragment A from diphtheria toxin. Biochim Biophys Acta. 1977 Aug 11;483(2):248–257. doi: 10.1016/0005-2744(77)90053-5. [DOI] [PubMed] [Google Scholar]
  6. Gill D. M., Meren R. ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3050–3054. doi: 10.1073/pnas.75.7.3050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Honjo T., Nishizuka Y., Kato I., Hayaishi O. Adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis by diphtheria toxin. J Biol Chem. 1971 Jul 10;246(13):4251–4260. [PubMed] [Google Scholar]
  8. Iglewski B. H., Kabat D. NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin,. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2284–2288. doi: 10.1073/pnas.72.6.2284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iwasaki M., Ohishi I., Sakaguchi G. Evidence that botulinum C2 toxin has two dissimilar components. Infect Immun. 1980 Aug;29(2):390–394. doi: 10.1128/iai.29.2.390-394.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jensen W. I., Duncan R. M. The susceptibility of the mallard duck (Anas platyrhynchos) to Clostridium botulinum C2 toxin. Jpn J Med Sci Biol. 1980 Apr;33(2):81–86. doi: 10.7883/yoken1952.33.81. [DOI] [PubMed] [Google Scholar]
  11. Katada T., Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci U S A. 1982 May;79(10):3129–3133. doi: 10.1073/pnas.79.10.3129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Leppla S. H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci U S A. 1982 May;79(10):3162–3166. doi: 10.1073/pnas.79.10.3162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McDonel J. L. Clostridium perfringens toxins (type A, B, C, D, E). Pharmacol Ther. 1980;10(3):617–655. doi: 10.1016/0163-7258(80)90031-5. [DOI] [PubMed] [Google Scholar]
  15. Mekalanos J. J., Collier R. J., Romig W. R. Purification of cholera toxin and its subunits: new methods of preparation and the use of hypertoxinogenic mutants. Infect Immun. 1978 May;20(2):552–558. doi: 10.1128/iai.20.2.552-558.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moss J., Richardson S. H. Activation of adenylate cyclase by heat-labile Escherichia coli enterotoxin. Evidence for ADP-ribosyltransferase activity similar to that of choleragen. J Clin Invest. 1978 Aug;62(2):281–285. doi: 10.1172/JCI109127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Noda M., Hirayama T., Kato I., Matsuda F. Crystallization and properties of staphylococcal leukocidin. Biochim Biophys Acta. 1980 Nov 17;633(1):33–44. doi: 10.1016/0304-4165(80)90035-5. [DOI] [PubMed] [Google Scholar]
  18. Ohishi I., Iwasaki M., Sakaguchi G. Purification and characterization of two components of botulinum C2 toxin. Infect Immun. 1980 Dec;30(3):668–673. doi: 10.1128/iai.30.3.668-673.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ohishi I. Lethal and vascular permeability activities of botulinum C2 toxin induced by separate injections of the two toxin components. Infect Immun. 1983 Apr;40(1):336–339. doi: 10.1128/iai.40.1.336-339.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ohishi I., Miyake M. Binding of the two components of C2 toxin to epithelial cells and brush borders of mouse intestine. Infect Immun. 1985 Jun;48(3):769–775. doi: 10.1128/iai.48.3.769-775.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ohishi I. Response of mouse intestinal loop to botulinum C2 toxin: enterotoxic activity induced by cooperation of nonlinked protein components. Infect Immun. 1983 May;40(2):691–695. doi: 10.1128/iai.40.2.691-695.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ohishi I., Tsuyama S. ADP-ribosylation of nonmuscle actin with component I of C2 toxin. Biochem Biophys Res Commun. 1986 Apr 29;136(2):802–806. doi: 10.1016/0006-291x(86)90511-5. [DOI] [PubMed] [Google Scholar]
  23. STERNE M., WENTZEL L. M. A new method for the large-scale production of high-titre botulinum formol-toxoid types C and D. J Immunol. 1950 Aug;65(2):175–183. [PubMed] [Google Scholar]
  24. Simpson L. L. A comparison of the pharmacological properties of Clostridium botulinum type C1 and C2 toxins. J Pharmacol Exp Ther. 1982 Dec;223(3):695–701. [PubMed] [Google Scholar]
  25. Simpson L. L. Molecular basis for the pharmacological actions of Clostridium botulinum type C2 toxin. J Pharmacol Exp Ther. 1984 Sep;230(3):665–669. [PubMed] [Google Scholar]
  26. Stephen J. Anthrax toxin. Pharmacol Ther. 1981;12(3):501–513. doi: 10.1016/0163-7258(81)90095-4. [DOI] [PubMed] [Google Scholar]
  27. Ueda K., Hayaishi O. ADP-ribosylation. Annu Rev Biochem. 1985;54:73–100. doi: 10.1146/annurev.bi.54.070185.000445. [DOI] [PubMed] [Google Scholar]
  28. Wielckens K., Bredehorst R., Hilz H. Quantification of protein-bound ADP-ribosyl and (ADP-ribosyl)n residues. Methods Enzymol. 1984;106:472–482. doi: 10.1016/0076-6879(84)06051-1. [DOI] [PubMed] [Google Scholar]
  29. Wilkins T., Krivan H., Stiles B., Carman R., Lyerly D. Clostridial toxins active locally in the gastrointestinal tract. Ciba Found Symp. 1985;112:230–241. doi: 10.1002/9780470720936.ch13. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES