Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1987 Feb;55(2):309–313. doi: 10.1128/iai.55.2.309-313.1987

Cholesterol metabolism by Treponema hyodysenteriae.

T B Stanton
PMCID: PMC260327  PMID: 3804438

Abstract

The sterol content of cellular lipids of Treponema hyodysenteriae, the agent of swine dysentery, was determined. When cultured in lipid-depleted brain heart infusion broth containing vesicles made from [4-14C]cholesterol and phosphatidylcholine, T. hyodysenteriae cells incorporated radioactive label. Most (95%) of this radioactivity was associated with bacterial membrane preparations. Lipids were extracted from radiolabeled cells and fractionated by silicic acid column chromatography. Components of the neutral lipid fraction were separated by reversed-phase high-performance liquid chromatography and were detected by monitoring both radioactivity and UV absorption (210 nm) of the column effluent. Cholesterol represented only about 5% of the total radioactivity in the bacterial neutral lipids. The remaining radioactivity was associated with a compound that did not absorb light at 210 nm. This lipid was purified and, on the basis of results from thin-layer chromatography and mass spectrometry, was identified as cholesterol (5 alpha-cholestan-3 beta-ol), a sterol lacking the unsaturated bond of cholesterol. Cholestanol was also present in cell-free culture broth, but only after growth of the spirochete. These results are evidence that cholesterol is used by T. hyodysenteriae for membrane synthesis. Cholesterol is converted to cholestanol in T. hyodysenteriae cultures and cholestanol is a major component (approximately 9% by weight) of T. hyodysenteriae cell lipids.

Full text

PDF
309

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
  2. Brinkley A. W., Gottesman A. R., Mott G. E. Isolation and characterization of new strains of cholesterol-reducing bacteria from baboons. Appl Environ Microbiol. 1982 Jan;43(1):86–89. doi: 10.1128/aem.43.1.86-89.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dahl C. E., Dahl J. S., Bloch K. Effect of alkyl-substituted precursors of cholesterol on artificial and natural membranes and on the viability of Mycoplasma capricolum. Biochemistry. 1980 Apr 1;19(7):1462–1467. doi: 10.1021/bi00548a031. [DOI] [PubMed] [Google Scholar]
  4. Eyssen H. J., Parmentier G. G., Compernolle F. C., De Pauw G., Piessens-Denef M. Biohydrogenation of sterols by Eubacterium ATCC 21,408--Nova species. Eur J Biochem. 1973 Jul 16;36(2):411–421. doi: 10.1111/j.1432-1033.1973.tb02926.x. [DOI] [PubMed] [Google Scholar]
  5. Kahane I., Razin S. Cholesterol-phosphatidylcholine dispersions as donors of cholesterol to Mycoplasma membranes. Biochim Biophys Acta. 1977 Nov 15;471(1):32–38. doi: 10.1016/0005-2736(77)90390-x. [DOI] [PubMed] [Google Scholar]
  6. Lemcke R. M., Burrows M. R. Sterol requirement for the growth of Treponema hyodysenteriae. J Gen Microbiol. 1980 Feb;116(2):539–543. doi: 10.1099/00221287-116-2-539. [DOI] [PubMed] [Google Scholar]
  7. Livermore B. P., Bey R. F., Johnson R. C. Lipid metabolism of Borrelia hermsi. Infect Immun. 1978 Apr;20(1):215–220. doi: 10.1128/iai.20.1.215-220.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Macdonald I. A., Bokkenheuser V. D., Winter J., McLernon A. M., Mosbach E. H. Degradation of steroids in the human gut. J Lipid Res. 1983 Jun;24(6):675–700. [PubMed] [Google Scholar]
  9. McNamara D. J., Proia A., Miettinen T. A. Thin-layer and gas--liquid chromatographic identification of neutral steroids in human and rat feces. J Lipid Res. 1981 Mar;22(3):474–484. [PubMed] [Google Scholar]
  10. Miettinen T. A., Proia A., McNamara D. J. Origins of fecal neutral steroids in rats. J Lipid Res. 1981 Mar;22(3):485–495. [PubMed] [Google Scholar]
  11. Owen R. W., Mason A. N., Bilton R. F. The degradation of cholesterol by Pseudomonas sp. NCIB 10590 under aerobic conditions. J Lipid Res. 1983 Nov;24(11):1500–1511. [PubMed] [Google Scholar]
  12. Rajković A. D. Cultivation of the Noguchi strain of Treponema pallidum in a lipid medium in the absence of serum. Z Med Mikrobiol Immunol. 1967;153(4):297–312. doi: 10.1007/BF02123751. [DOI] [PubMed] [Google Scholar]
  13. Razin S. Cholesterol incorporation into bacterial membranes. J Bacteriol. 1975 Oct;124(1):570–572. doi: 10.1128/jb.124.1.570-572.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Razin S., Kutner S., Efrati H., Rottem S. Phospholipid and cholesterol uptake by Mycoplasma cells and membranes. Biochim Biophys Acta. 1980 Jun 6;598(3):628–640. doi: 10.1016/0005-2736(80)90042-5. [DOI] [PubMed] [Google Scholar]
  15. Razin S., Tully J. G. Cholesterol requirement of mycoplasmas. J Bacteriol. 1970 May;102(2):306–310. doi: 10.1128/jb.102.2.306-310.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rottem S., Razin S. Membrane lipids of Mycoplasma hominis. J Bacteriol. 1973 Feb;113(2):565–571. doi: 10.1128/jb.113.2.565-571.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sadzikowski M. R., Sperry J. F., Wilkins T. D. Cholesterol-reducing bacterium from human feces. Appl Environ Microbiol. 1977 Oct;34(4):355–362. doi: 10.1128/aem.34.4.355-362.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shefer S., Hauser S., Mosbach E. H. Biosynthesis of cholestanol: 5-alpha-cholestan-3-one reductase of rat liver. J Lipid Res. 1966 Nov;7(6):763–771. [PubMed] [Google Scholar]
  19. Skrede S., Björkhem I. Biosynthesis of cholestanol from intestinal 7 alpha-hydroxy-4-cholesten-3-one. J Biol Chem. 1982 Jul 25;257(14):8363–8367. [PubMed] [Google Scholar]
  20. Stanton T. B., Cornell C. P. Erythrocytes as a source of essential lipids for Treponema hyodysenteriae. Infect Immun. 1987 Feb;55(2):304–308. doi: 10.1128/iai.55.2.304-308.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES