Abstract
Mice display strong natural resistance to the rat-specific Trypanosoma lewisi. Intravenously injected intact T. lewisi parasites were eliminated by mice within 18 to 24 h. In comparison, "nude" T. lewisi organisms lacking the surface coat were rapidly and totally cleared from the bloodstream within 2 h postinoculation. Similarly, in vitro-cultivated trypanosomes were readily eliminated by mice with the conspicuous absence of a lag phase. Elimination of nude T. lewisi, like that of intact trypanosomes, required murine complement component C3. Splenectomy of mice did not affect their ability to eliminate T. lewisi. However, C3 depletion with cobra venom factor rendered splenectomized mice susceptible to this rat trypanosome; in these mice, T. lewisi established prolonged and frequently fatal infections. Beige mice were able to efficiently eliminate T. lewisi. But combined treatments of beige (bg/bg) and heterozygous (bg/+) mice with cobra venom factor and silica dust, or normal rat serum and silica dust, incapacitated the natural resistance of these mice to T. lewisi. Such combined treatments of beige and control mice resulted in fulminating parasitemias and death of the animals. Altogether, the results of the present studies indicate that T. lewisi elimination by mice requires the following: exposure of C3 acceptors on the surface of the parasites; activation of murine C3, probably via the alternative complement pathway; and destruction of the C3b-coated parasites by their interaction with C3b receptor-bearing, phagocytic effector cells that are abundant in the spleen and sensitive to silica dust.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albright J. F., Albright J. W. Natural resistance to animal parasites. Contemp Top Immunobiol. 1984;12:1–52. doi: 10.1007/978-1-4684-4571-8_1. [DOI] [PubMed] [Google Scholar]
- Albright J. W., Albright J. F. Basis of the specificity of rodent trypanosomes for their natural hosts. Infect Immun. 1981 Aug;33(2):355–363. doi: 10.1128/iai.33.2.355-363.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albright J. W., Albright J. F. Differences in resistance to Trypanosoma musculi infection among strains of inbred mice. Infect Immun. 1981 Aug;33(2):364–371. doi: 10.1128/iai.33.2.364-371.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albright J. W., Albright J. F. Growth of Trypanosoma musculi in cultures of murine spleen cells and analysis of the requirement for supportive spleen cells. Infect Immun. 1978 Nov;22(2):343–349. doi: 10.1128/iai.22.2.343-349.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albright J. W., Albright J. F. Murine natural resistance to Trypanosoma lewisi involves complement component C3 and radiation-resistant, silica dust-sensitive effector cells. Infect Immun. 1985 Jan;47(1):176–182. doi: 10.1128/iai.47.1.176-182.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albright J. W., Albright J. F. The decline of immunological resistance of aging mice to Trypanosoma musculi. Mech Ageing Dev. 1982 Dec;20(4):315–330. doi: 10.1016/0047-6374(82)90099-9. [DOI] [PubMed] [Google Scholar]
- Dusanic D. G. Crossed immunoelectrophoretic analyses of antigens from Trypanosoma lewisi and Trypanosoma musculi. Int J Parasitol. 1979 Dec;9(6):577–583. doi: 10.1016/0020-7519(79)90015-8. [DOI] [PubMed] [Google Scholar]
- Dwyer D. M. Cell surface saccharides of Trypanosoma lewisi. I. Polycation-induced cell agglutination and fine-structure cytochemistry. J Cell Sci. 1975 Dec;19(3):621–644. doi: 10.1242/jcs.19.3.621. [DOI] [PubMed] [Google Scholar]
- Dwyer D. M. Immunologic and fine structure evidence of avidly bound host serum proteins in the surface coat of a bloodstream trypanosome. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1222–1226. doi: 10.1073/pnas.73.4.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenblatt C. L., Lincicome D. R. Identity of trypanosome growth factors in serum. II. Active globulin components. Exp Parasitol. 1966 Oct;19(2):139–150. doi: 10.1016/0014-4894(66)90062-2. [DOI] [PubMed] [Google Scholar]
- LINCICOME D. R., FRANCIS E. H. Quantitative studies on heterologous sera inducing development of Trypanosoma lewisi in mice. Exp Parasitol. 1961 Feb;11:68–76. doi: 10.1016/0014-4894(61)90009-1. [DOI] [PubMed] [Google Scholar]
- LINCICOME D. R. Growth of Trypanosoma lewisi in the heterologous mouse host. Exp Parasitol. 1958 Jan;7(1):1–13. doi: 10.1016/0014-4894(58)90002-x. [DOI] [PubMed] [Google Scholar]
- Murray M., Hirumi H., Moloo S. K. Suppression of Trypanosoma congolense, T. vivax and T. brucei infection rates in tsetse flies maintained on goats immunized with uncoated forms of trypanosomes grown in vitro. Parasitology. 1985 Aug;91(Pt 1):53–66. doi: 10.1017/s0031182000056511. [DOI] [PubMed] [Google Scholar]
- Nielsen K., Sheppard J., Tizard I., Holmes W. Trypanosoma lewisi: characterization of complement-activating components. Exp Parasitol. 1977 Oct;43(1):153–160. doi: 10.1016/0014-4894(77)90018-2. [DOI] [PubMed] [Google Scholar]
- Oliver C., Essner E. Formation of anomalous lysosomes in monocytes, neutrophils, and eosinophils from bone marrow of mice with Chédiak-Higashi syndrome. Lab Invest. 1975 Jan;32(1):17–27. [PubMed] [Google Scholar]
- Roder J. C. The beige mutation in the mouse. I. A stem cell predetermined impairment in natural killer cell function. J Immunol. 1979 Nov;123(5):2168–2173. [PubMed] [Google Scholar]
- Sturtevant J. E., Balber A. E. Externally disposed membrane polypeptides of intact and protease-treated Trypanosoma lewisi correlated with sensitivity to alternate complement pathway-mediated lysis. Infect Immun. 1983 Dec;42(3):869–875. doi: 10.1128/iai.42.3.869-875.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi K., Wood H., Swank R. T. Lysosomal elastase and cathepsin G in beige mice. Neutrophils of beige (Chediak-Higashi) mice selectively lack lysosomal elastase and cathepsin G. J Exp Med. 1986 Mar 1;163(3):665–677. doi: 10.1084/jem.163.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka S., Suzuki T., Nishioka K. Assay of classical and alternative pathway activities of murine complement using antibody-sensitized rabbit erythrocytes. J Immunol Methods. 1986 Feb 12;86(2):161–170. doi: 10.1016/0022-1759(86)90448-5. [DOI] [PubMed] [Google Scholar]
- Vickerman K. On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci. 1969 Jul;5(1):163–193. doi: 10.1242/jcs.5.1.163. [DOI] [PubMed] [Google Scholar]
- Wechsler D. S., Kongshavn P. A. Characterization of antibodies mediating protection and cure of Trypanosoma musculi infection in mice. Infect Immun. 1985 Jun;48(3):787–794. doi: 10.1128/iai.48.3.787-794.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wechsler D. S., Kongshavn P. A. Cure of Trypanosoma musculi infection by heat-labile activity in immune plasma. Infect Immun. 1984 Jun;44(3):756–759. doi: 10.1128/iai.44.3.756-759.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
