Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1987 Mar;55(3):541–546. doi: 10.1128/iai.55.3.541-546.1987

Candidacidal factors in murine bronchoalveolar lavage fluid.

K M Nugent, R B Fick Jr
PMCID: PMC260370  PMID: 3818084

Abstract

Respiratory secretions provide an efficient method for protecting the large surface area of the lower respiratory tract. To determine whether lung secretions contribute to antifungal defenses, we tested bronchoalveolar lavage fluid for fungicidal activity. Candida albicans (blastoconidia) was incubated in unconcentrated cell-free lavage fluid from Swiss Webster mice and then cultured quantitatively to measure residual viability. In control buffer the residual fractions of viable fungi were 1.03 +/- 0.12 at 60 min and 0.84 +/- 0.05 at 120 min, whereas the residual fractions in lavage fluid were 0.64 +/- 0.07 and 0.23 +/- 0.05, respectively (P less than 0.05 by t tests). This activity was trypsin sensitive and heat stable (56 degrees C) and did not require divalent cations. It did not sediment with the surfactant fraction of lung lavage fluid. Unconcentrated lavage fluid reduced the adherence of C. albicans to serum-coated glass tubes to 2.3 +/- 1.5% of that of control Candida suspensions (n = 5, P less than 0.05 by t test). It did not alter Candida ingestion or intracellular processing by alveolar macrophages. Lavage fluid also killed clinical isolates of Candida tropicalis and Torulopsis glabrata but did not kill Candida krusei or Candida parapsilosis. Lavage fluid was concentrated and passed through an acrylamide-agarose gel matrix. The chromatogram indicated that the candidacidal activity eluted in a peak with a molecular weight range of 29,000 to 40,000. After electrophoresis on 15% sodium dodecyl sulfate-polyacrylamide gels, these fractions resolved into three bands. These were transferred to nitrocellulose and then eluted with Triton X-100; this procedure permitted the isolation of a single band of candidacidal activity with a molecular weight of 29,000. In summary, murine lavage fluid contains a heat-stable protein with direct antifungal activity. This soluble factor may contribute to lung defense processes by reducing fungal viability and adherence to tissue surfaces.

Full text

PDF
541

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold R. R., Brewer M., Gauthier J. J. Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect Immun. 1980 Jun;28(3):893–898. doi: 10.1128/iai.28.3.893-898.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BAUM G. L. The significance of Candida albicans in human sputum. N Engl J Med. 1960 Jul 14;263:70–73. doi: 10.1056/NEJM196007142630204. [DOI] [PubMed] [Google Scholar]
  3. Coonrod J. D., Lester R. L., Hsu L. C. Characterization of the extracellular bactericidal factors of rat alveolar lining material. J Clin Invest. 1984 Oct;74(4):1269–1279. doi: 10.1172/JCI111537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coonrod J. D., Yoneda K. Detection and partial characterization of antibacterial factor(s) in alveolar lining material of rats. J Clin Invest. 1983 Jan;71(1):129–141. doi: 10.1172/JCI110741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeGregorio M. W., Lee W. M., Linker C. A., Jacobs R. A., Ries C. A. Fungal infections in patients with acute leukemia. Am J Med. 1982 Oct;73(4):543–548. doi: 10.1016/0002-9343(82)90334-5. [DOI] [PubMed] [Google Scholar]
  6. Edwards J. E., Jr, Lehrer R. I., Stiehm E. R., Fischer T. J., Young L. S. Severe candidal infections: clinical perspective, immune defense mechanisms, and current concepts of therapy. Ann Intern Med. 1978 Jul;89(1):91–106. doi: 10.7326/0003-4819-89-1-91. [DOI] [PubMed] [Google Scholar]
  7. Fick R. B., Jr, Baltimore R. S., Squier S. U., Reynolds H. Y. IgG proteolytic activity of Pseudomonas aeruginosa in cystic fibrosis. J Infect Dis. 1985 Apr;151(4):589–598. doi: 10.1093/infdis/151.4.589. [DOI] [PubMed] [Google Scholar]
  8. Fick R. B., Jr, Naegel G. P., Squier S. U., Wood R. E., Gee J. B., Reynolds H. Y. Proteins of the cystic fibrosis respiratory tract. Fragmented immunoglobulin G opsonic antibody causing defective opsonophagocytosis. J Clin Invest. 1984 Jul;74(1):236–248. doi: 10.1172/JCI111407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. LaForce F. M., Sharrar R. G., Arai G. Characterization of yeast agglutinins in lavage fluid from lungs of rabbits. J Infect Dis. 1979 Jul;140(1):96–104. doi: 10.1093/infdis/140.1.96. [DOI] [PubMed] [Google Scholar]
  11. Laforce F. M., Boose D. S. Sublethal damage of Escherichia coli by lung lavage. Am Rev Respir Dis. 1981 Dec;124(6):733–737. doi: 10.1164/arrd.1981.124.6.733. [DOI] [PubMed] [Google Scholar]
  12. Lehrer R. I., Ferrari L. G., Patterson-Delafield J., Sorrell T. Fungicidal activity of rabbit alveolar and peritoneal macrophages against Candida albicans. Infect Immun. 1980 Jun;28(3):1001–1008. doi: 10.1128/iai.28.3.1001-1008.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Masur H., Rosen P. P., Armstrong D. Pulmonary disease caused by Candida species. Am J Med. 1977 Dec;63(6):914–925. doi: 10.1016/0002-9343(77)90546-0. [DOI] [PubMed] [Google Scholar]
  14. Medoff G., Kobayashi G. S., Kwan C. N., Schlessinger D., Venkov P. Potentiation of rifampicin and 5-fluorocytosine as antifungal antibiotics by amphotericin B (yeast-membrane permeability-ribosomal RNA-eukaryotic cell-synergism). Proc Natl Acad Sci U S A. 1972 Jan;69(1):196–199. doi: 10.1073/pnas.69.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nugent K. M., Onofrio J. M. Pulmonary tissue resistance to Candida albicans in normal and in immunosuppressed mice. Am Rev Respir Dis. 1983 Nov;128(5):909–914. doi: 10.1164/arrd.1983.128.5.909. [DOI] [PubMed] [Google Scholar]
  16. Patterson-Delafield J., Szklarek D., Martinez R. J., Lehrer R. I. Microbicidal cationic proteins of rabbit alveolar macrophages: amino acid composition and functional attributes. Infect Immun. 1981 Feb;31(2):723–731. doi: 10.1128/iai.31.2.723-731.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pollock J. J., Denepitiya L., MacKay B. J., Iacono V. J. Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on Candida albicans. Infect Immun. 1984 Jun;44(3):702–707. doi: 10.1128/iai.44.3.702-707.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Selsted M. E., Szklarek D., Ganz T., Lehrer R. I. Activity of rabbit leukocyte peptides against Candida albicans. Infect Immun. 1985 Jul;49(1):202–206. doi: 10.1128/iai.49.1.202-206.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shelley S. A., Paciga J. E., Balis J. U. Purification of surfactant from lung washings and washings contaminated with blood constituents. Lipids. 1977 Jun;12(6):505–510. doi: 10.1007/BF02535450. [DOI] [PubMed] [Google Scholar]
  20. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WIEME R. J. An improved technique of agar-gel electrophoresis on microscope slides. Clin Chim Acta. 1959 May;4(3):317–321. doi: 10.1016/0009-8981(59)90096-8. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES