Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1987 Mar;55(3):559–563. doi: 10.1128/iai.55.3.559-563.1987

In vitro effect of synthetic pyocyanine on neutrophil superoxide production.

K M Miller, D G Dearborn, R U Sorensen
PMCID: PMC260373  PMID: 3028961

Abstract

Pyocyanine, a low-molecular-weight phenazine pigment produced by Pseudomonas aeruginosa, has previously been shown to strongly inhibit human lymphocyte blastogenesis. We now report that synthetic pyocyanine can also affect the generation of superoxide by human peripheral blood polymorphonuclear leukocytes (PMNs) in a dose-dependent manner. Superoxide production by PMNs stimulated with phorbol myristate acetate (PMA) was measured in the presence and absence of pyocyanine, phenazine, and trifluoperazine, a phenothiazine of similar chemical structure to the phenazine pigments. Pyocyanine at 50 microM inhibited superoxide production to 28.9 +/- 2.8% of PMA control values, whereas at the lower concentration of 1 microM, the production of superoxide was significantly enhanced (203 +/- 31.7% of PMA control values). Phenazine, the tricyclic parent compound of pyocyanine, had only a minor effect. Trifluoperazine had a marked inhibitory effect on superoxide generation at concentrations above 1 microM. None of the compounds induced superoxide generation in the absence of PMA. Pyocyanine at all concentrations, unlike phenothiazines, had very little effect on the release of neutrophil granule enzymes. The effect of P. aeruginosa phenazine pigments on polymorphonuclear phagocytes is of significance, since inhibition of host PMN function at sites of infection could result in ineffective bacterial killing, whereas enhanced PMN function could lead to greater tissue damage. These two possibilities are not mutually exclusive and may coexist depending on local pyocyanine concentrations.

Full text

PDF
559

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong A. V., Stewart-Tull D. E., Roberts J. S. Characterisation of the Pseudomonas aeruginosa factor that inhibits mouse-liver mitochondrial respiration. J Med Microbiol. 1971 May;4(2):249–262. doi: 10.1099/00222615-4-2-249. [DOI] [PubMed] [Google Scholar]
  2. Armstrong A. V., Stewart-Tull D. E. The site of the activity of extracellular products of Pseudomonas aeruginosa in the electron-transport chain in mammalian cell respiration. J Med Microbiol. 1971 May;4(2):263–270. doi: 10.1099/00222615-4-2-263. [DOI] [PubMed] [Google Scholar]
  3. Berton G., Gordon S. Desensitization of macrophages to stimuli which induce secretion of superoxide anion. Down-regulation of receptors for phorbol myristate acetate. Eur J Immunol. 1983 Aug;13(8):620–627. doi: 10.1002/eji.1830130804. [DOI] [PubMed] [Google Scholar]
  4. Brigham K. L., Begley C. J., Bernard G. R., Hutchison A. A., Loyd J. E., Lucht W. D., Meyrick B., Newman J. H., Niedermeyer M. E., Ogletree M. L. Septicemia and lung injury. Clin Lab Med. 1983 Dec;3(4):719–744. [PubMed] [Google Scholar]
  5. Cohen H. J., Chovaniec M. E., Ellis S. E. Chlorpromazine inhibition of granulocyte superoxide production. Blood. 1980 Jul;56(1):23–29. [PubMed] [Google Scholar]
  6. Hassan H. M., Fridovich I. Mechanism of the antibiotic action pyocyanine. J Bacteriol. 1980 Jan;141(1):156–163. doi: 10.1128/jb.141.1.156-163.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KAPLOW L. S. A histochemical procedure for localizing and evaluating leukocyte alkaline phosphatase activity in smears of blood and marrow. Blood. 1955 Oct;10(10):1023–1029. [PubMed] [Google Scholar]
  8. Kazura J. W., de Brito P., Rabbege J., Aikawa M. Role of granulocyte oxygen products in damage of Schistosoma mansoni eggs in vitro. J Clin Invest. 1985 Apr;75(4):1297–1307. doi: 10.1172/JCI111830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Knight M., Hartman P. E., Hartman Z., Young V. M. A new method of preparation of pyocyanin and demonstration of an unusual bacterial sensitivity. Anal Biochem. 1979 May;95(1):19–23. doi: 10.1016/0003-2697(79)90179-9. [DOI] [PubMed] [Google Scholar]
  10. LITWACK G. Photometric determination of lysozyme activity. Proc Soc Exp Biol Med. 1955 Jul;89(3):401–403. doi: 10.3181/00379727-89-21824. [DOI] [PubMed] [Google Scholar]
  11. LIU P. V., ABE Y., BATES J. L. The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. J Infect Dis. 1961 Mar-Apr;108:218–228. doi: 10.1093/infdis/108.2.218. [DOI] [PubMed] [Google Scholar]
  12. Lee S. K., Singh J., Taylor R. B. Subclasses of T cells with different sensitivities to cytotoxic antibody in the presence of anesthetics. Eur J Immunol. 1975 Apr;5(4):259–262. doi: 10.1002/eji.1830050408. [DOI] [PubMed] [Google Scholar]
  13. Leisinger T., Margraff R. Secondary metabolites of the fluorescent pseudomonads. Microbiol Rev. 1979 Sep;43(3):422–442. doi: 10.1128/mr.43.3.422-442.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MASSEY V. The microestimation of succinate and the extinction coefficient of cytochrome c. Biochim Biophys Acta. 1959 Jul;34:255–256. doi: 10.1016/0006-3002(59)90259-8. [DOI] [PubMed] [Google Scholar]
  15. McPhail L. C., Clayton C. C., Snyderman R. The NADPH oxidase of human polymorphonuclear leukocytes. Evidence for regulation by multiple signals. J Biol Chem. 1984 May 10;259(9):5768–5775. [PubMed] [Google Scholar]
  16. Ochs D. L., Reed P. W. Inhibition of the neutrophil oxidative burst and degranulation by phenothiazines. Biochem Biophys Res Commun. 1981 Oct 15;102(3):958–962. doi: 10.1016/0006-291x(81)91631-4. [DOI] [PubMed] [Google Scholar]
  17. Shurin S. B., Cohen H. J., Whitin J. C., Newburger P. E. Impaired granulocyte superoxide production and prolongation of the respiratory burst due to a low-affinity NADPH-dependent oxidase. Blood. 1983 Sep;62(3):564–571. [PubMed] [Google Scholar]
  18. Sorensen R. U., Klinger J. D., Cash H. A., Chase P. A., Dearborn D. G. In vitro inhibition of lymphocyte proliferation by Pseudomonas aeruginosa phenazine pigments. Infect Immun. 1983 Jul;41(1):321–330. doi: 10.1128/iai.41.1.321-330.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stewart-Tull D. E., Armstrong A. V. The effect of 1-hydroxyphenazine and pyocyanin from Pseudomonas aeruginosa on mammalian cell respiration. J Med Microbiol. 1972 Feb;5(1):67–73. doi: 10.1099/00222615-5-1-67. [DOI] [PubMed] [Google Scholar]
  20. Till G. O., Johnson K. J., Kunkel R., Ward P. A. Intravascular activation of complement and acute lung injury. Dependency on neutrophils and toxic oxygen metabolites. J Clin Invest. 1982 May;69(5):1126–1135. doi: 10.1172/JCI110548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Worthen G. S., Henson P. M. Mechanisms of acute lung injury. Clin Lab Med. 1983 Dec;3(4):601–617. [PubMed] [Google Scholar]
  22. ZAUGG W. S. SPECTROSCOPIC CHARACTERISTICS AND SOME CHEMICAL PROPERTIES OF N-METHYLPHENAZINIUM METHYL SULFATE (PHENAZINE METHOSULFATE) AND PYOCYANINE AT THE SEMIQUIDNOID OXIDATION LEVEL. J Biol Chem. 1964 Nov;239:3964–3970. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES