Abstract
Bacterial lipopolysaccharides (LPS) have been reported to influence the oxidative response of human polymorphonuclear leukocytes (PMN). However, results sometimes conflict. In the present study, we demonstrated that activation of human PMN by LPS depends on the class (smooth [S] or rough [R]) to which the LPS belongs. Lucigenin-dependent chemiluminescence was used to assay oxygen radical production. Twenty different S- and R-form LPS and free lipid A were tested in concentrations of 0.01 to 100 micrograms/ml. S-form LPS activated PMN only at maximal concentrations and to a low extent. R-form LPS and free lipid A were potent inducers of granulocyte chemiluminescence even at a concentration of 0.1 microgram/ml. The results indicated that R-form LPS are very effective in inducing granulocyte chemiluminescence, whereas true S-form preparations are inactive. It is not known at present whether this higher activity is due to a more lipophilic character of R-form LPS or whether the presence of the O polysaccharide in S-form LPS exerts an inhibitory effect on their action on granulocytes.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brade H., Galanos C., Lüderitz O. Differential determination of the 3-Deoxy-D-mannooctulosonic acid residues in lipopolysaccharides of Salmonella minnesota rough mutants. Eur J Biochem. 1983 Mar 1;131(1):195–200. doi: 10.1111/j.1432-1033.1983.tb07249.x. [DOI] [PubMed] [Google Scholar]
- Cooper N. R., Morrison D. C. Binding and activation of the first component of human complement by the lipid A region of lipopolysaccharides. J Immunol. 1978 Jun;120(6):1862–1868. [PubMed] [Google Scholar]
- Dahinden C., Galanos C., Fehr J. Granulocyte activation by endotoxin. I. Correlation between adherence and other granulocyte functions, and role of endotoxin structure on biologic activity. J Immunol. 1983 Feb;130(2):857–862. [PubMed] [Google Scholar]
- Freudenberg M. A., Freudenberg N., Galanos C. Time course of cellular distribution of endotoxin in liver, lungs and kidneys of rats. Br J Exp Pathol. 1982 Feb;63(1):56–65. [PMC free article] [PubMed] [Google Scholar]
- Galanos C., Freudenberg M. A., Lüderitz O., Rietschel E. T., Westphal O. Chemical, physicochemical and biological properties of bacterial lipopolysaccharides. Prog Clin Biol Res. 1979;29:321–332. [PubMed] [Google Scholar]
- Galanos C., Freudenberg M. A., Reutter W. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5939–5943. doi: 10.1073/pnas.76.11.5939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galanos C., Lüderitz O. Electrodialysis of lipopolysaccharides and their conversion to uniform salt forms. Eur J Biochem. 1975 Jun;54(2):603–610. doi: 10.1111/j.1432-1033.1975.tb04172.x. [DOI] [PubMed] [Google Scholar]
- Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
- Galanos C., Rietschel E. T., Lüderitz O., Westphal O. Interaction of lipopolysaccharides and lipid A with complement. Eur J Biochem. 1971 Mar 1;19(1):143–152. doi: 10.1111/j.1432-1033.1971.tb01298.x. [DOI] [PubMed] [Google Scholar]
- Guthrie L. A., McPhail L. C., Henson P. M., Johnston R. B., Jr Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J Exp Med. 1984 Dec 1;160(6):1656–1671. doi: 10.1084/jem.160.6.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haslett C., Guthrie L. A., Kopaniak M. M., Johnston R. B., Jr, Henson P. M. Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Pathol. 1985 Apr;119(1):101–110. [PMC free article] [PubMed] [Google Scholar]
- Henricks P. A., van der Tol M. E., Thyssen R. M., van Asbeck B. S., Verhoef J. Escherichia coli lipopolysaccharides diminish and enhance cell function of human polymorphonuclear leukocytes. Infect Immun. 1983 Jul;41(1):294–301. doi: 10.1128/iai.41.1.294-301.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapp A., Luger T. A., Maly F. E., Schöpf E. Granulocyte-activating mediators (GRAM): I. Generation by lipopolysaccharide-stimulated mononuclear cells. J Invest Dermatol. 1986 May;86(5):523–528. doi: 10.1111/1523-1747.ep12354953. [DOI] [PubMed] [Google Scholar]
- Morrison D. C., Kline L. F. Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides (LPS). J Immunol. 1977 Jan;118(1):362–368. [PubMed] [Google Scholar]
- Proctor R. A. Endotoxin in vitro interactions with human neutrophils: depression of chemiluminescence, oxygen consumption, superoxide production, and killing. Infect Immun. 1979 Sep;25(3):912–921. doi: 10.1128/iai.25.3.912-921.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vukajlovich S. W. Antibody-independent activation of the classical pathway of human serum complement by lipid A is restricted to re-chemotype lipopolysaccharide and purified lipid A. Infect Immun. 1986 Sep;53(3):480–485. doi: 10.1128/iai.53.3.480-485.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson M. E., Jones D. P., Munkenbeck P., Morrison D. C. Serum-dependent and -independent effects of bacterial lipopolysaccharides on human neutrophil oxidative capacity in vitro. J Reticuloendothel Soc. 1982 Jan;31(1):43–57. [PubMed] [Google Scholar]
