Abstract
Enterotoxigenic Escherichia coli (ETEC) may have profound effects on the capacity of gut-associated lymphoid tissue to mount a secretory immune response because of the potential ability of heat-stable toxin or heat-labile toxin to modulate the immune response. To examine the effects of ETEC or its purified enterotoxins upon the humoral immune response of murine small intestinal Peyer's patch lymphocytes, BDF1 (lipopolysaccharide-responder) and C3H/HeJ (lipopolysaccharide-nonresponder) mice were orally primed with sheep erythrocytes (SRBC) four times during a 2-week period to initiate differentiation of Peyer's patch B lymphocytes to cells committed to anti-SRBC immunoglobulin A (IgA) production. Halfway through the oral priming regimen the mice were gastrically intubated with 10(8) ETEC, 10(8) non-ETEC, or saline. ETEC persisted in the small intestine for at least 7 days at a level of 10(3) to 10(4) bacteria per mouse. Seven days after the last oral dosing with SRBC, Peyer's patch lymphocytes were removed from infected or saline-treated mice and incubated in vitro with SRBC. The ETEC infection had a small effect on the anti-SRBC IgM plaque-forming cell response of SRBC-primed mice but inhibited significantly the anti-SRBC IgA plaque-forming cell response in both BDF1 and C3H/HeJ mice as compared with uninfected controls. The non-ETEC, an isolate from normal mouse small intestine, had no significant effect on either IgM or IgA anti-SRBC plaque-forming cell response. Purified heat-labile toxin, not heat-stable toxin, alone in a dose-dependent manner significantly inhibited both the IgA and IgM plaque-forming cell response of Peyer's patch lymphocytes from primed mice. These data suggest that ETEC can inhibit the development of the gut-associated lymphoid tissue IgA immune response through the immunopharmacological effect of an enterotoxin, the heat-labile toxin.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bienenstock J., Befus A. D. Mucosal immunology. Immunology. 1980 Oct;41(2):249–270. [PMC free article] [PubMed] [Google Scholar]
- Clements J. D., Finkelstein R. A. Isolation and characterization of homogeneous heat-labile enterotoxins with high specific activity from Escherichia coli cultures. Infect Immun. 1979 Jun;24(3):760–769. doi: 10.1128/iai.24.3.760-769.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coffey R. G., Hadden E. M., Hadden J. W. Evidence for cyclic GMP and calcium mediation of lymphocyte activation by mitogens. J Immunol. 1977 Oct;119(4):1387–1394. [PubMed] [Google Scholar]
- Cunningham A. J., Szenberg A. Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology. 1968 Apr;14(4):599–600. [PMC free article] [PubMed] [Google Scholar]
- Dean A. G., Ching Y. C., Williams R. G., Harden L. B. Test for Escherichia coli enterotoxin using infant mice: application in a study of diarrhea in children in Honolulu. J Infect Dis. 1972 Apr;125(4):407–411. doi: 10.1093/infdis/125.4.407. [DOI] [PubMed] [Google Scholar]
- Donta S. T., Moon H. W., Whipp S. C. Detection of heat-labile Escherichia coli enterotoxin with the use of adrenal cells in tissue culture. Science. 1974 Jan 25;183(4122):334–336. doi: 10.1126/science.183.4122.334. [DOI] [PubMed] [Google Scholar]
- Dreyfus L. A., Jaso-Friedmann L., Robertson D. C. Characterization of the mechanism of action of Escherichia coli heat-stable enterotoxin. Infect Immun. 1984 May;44(2):493–501. doi: 10.1128/iai.44.2.493-501.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert K. M., Hoffmann M. K. cAMP is an essential signal in the induction of antibody production by B cells but inhibits helper function of T cells. J Immunol. 1985 Sep;135(3):2084–2089. [PubMed] [Google Scholar]
- Kawanishi H., Saltzman L. E., Strober W. Mechanisms regulating IgA class-specific immunoglobulin production in murine gut-associated lymphoid tissues. I. T cells derived from Peyer's patches that switch sIgM B cells to sIgA B cells in vitro. J Exp Med. 1983 Feb 1;157(2):433–450. doi: 10.1084/jem.157.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawanishi H., Saltzman L., Strober W. Mechanisms regulating IgA class-specific immunoglobulin production in murine gut-associated lymphoid tissues. II. Terminal differentiation of postswitch sIgA-bearing Peyer's patch B cells. J Exp Med. 1983 Sep 1;158(3):649–669. doi: 10.1084/jem.158.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kishimoto T., Nishizawa Y., Kikutani H., Yamamura Y. Biphasic effect of cyclic amp on IgG production and on the changes of non-histone nuclear proteins induced with anti-immunoglobulin and enhancing soluble factor. J Immunol. 1977 Jun;118(6):2027–2033. [PubMed] [Google Scholar]
- Kiyono H., Cooper M. D., Kearney J. F., Mosteller L. M., Michalek S. M., Koopman W. J., McGhee J. R. Isotype specificity of helper T cell clones. Peyer's patch Th cells preferentially collaborate with mature IgA B cells for IgA responses. J Exp Med. 1984 Mar 1;159(3):798–811. doi: 10.1084/jem.159.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiyono H., McGhee J. R., Wannemuehler M. J., Frangakis M. V., Spalding D. M., Michalek S. M., Koopman W. J. In vivo immune response to a T-cell-dependent antigen by cultures of disassociated murine Peyer's patch. Proc Natl Acad Sci U S A. 1982 Jan;79(2):596–600. doi: 10.1073/pnas.79.2.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kook A. I., Trainin N. Intracellular events involved in the induction of immune competence in lymphoid cells by a thymus humoral factor. J Immunol. 1975 Jan;114(1 Pt 1):151–157. [PubMed] [Google Scholar]
- McGhee J. R., Michalek S. M., Kiyono H., Eldridge J. H., Colwell D. E., Williamson S. I., Wannemuehler M. J., Jirillo E., Mosteller L. M., Spalding D. M. Mucosal immunoregulation: environmental lipopolysaccharide and GALT T lymphocytes regulate the IgA response. Microbiol Immunol. 1984;28(3):261–280. doi: 10.1111/j.1348-0421.1984.tb00679.x. [DOI] [PubMed] [Google Scholar]
- Middlebrook J. L., Dorland R. B. Bacterial toxins: cellular mechanisms of action. Microbiol Rev. 1984 Sep;48(3):199–221. doi: 10.1128/mr.48.3.199-221.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker C. W. Role of cyclic nucleotides in regulating lymphocytes. Ann N Y Acad Sci. 1979;332:255–261. doi: 10.1111/j.1749-6632.1979.tb47119.x. [DOI] [PubMed] [Google Scholar]
- Sack R. B., Froehlich J. L. Berberine inhibits intestinal secretory response of Vibrio cholerae and Escherichia coli enterotoxins. Infect Immun. 1982 Feb;35(2):471–475. doi: 10.1128/iai.35.2.471-475.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shah D. B., Kauffman P. E., Boutin B. K., Johnson C. H. Detection of heat-labile-enterotoxin-producing colonies of Escherichia coli and Vibrio cholerae by solid-phase sandwich radioimmunoassays. J Clin Microbiol. 1982 Sep;16(3):504–508. doi: 10.1128/jcm.16.3.504-508.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staples S. J., Asher S. E., Giannella R. A. Purification and characterization of heat-stable enterotoxin produced by a strain of E. coli pathogenic for man. J Biol Chem. 1980 May 25;255(10):4716–4721. [PubMed] [Google Scholar]
