Abstract
We compared the relative infectivity and virulence of lipopolysaccharide (LPS) variants of the Nine Mile strain of Coxiella burnetii with those of the Priscilla strain, a representative of endocarditis-type strains. In agreement with results of previous studies, Nine Mile phase I (9mi/I) organisms were highly infectious, eliciting seroconversion and fever with inocula containing as few as four organisms. Viable 9mi/I was recovered from the spleens of infected animals 30 days postinfection. Nine Mile phase II (9mi/II) organisms did not elicit fever or seroconversion except with very large inocula, and viable organisms could not be recovered at 30 days postinfection. The Nine Mile/Crazy variant, bearing the intermediate-type LPS, was also highly infectious, as determined by fever response and seroconversion, although, as with 9mi/II, viable organisms could not be recovered 30 days postinfection. The Priscilla strain in phase I (Pris/I) was as infectious as 9mi/I, as determined by seroconversion and its presence in the spleen 30 days postinfection; but in contrast to 9mi/I, more than 10(5) Pris/I isolates were required to induce fever. The temporal appearances of anti-phase I and II antibodies were similar for the two strains. A variety of serological techniques measuring antibody response against whole-cell and purified LPS antigens in agglutination, immunofluorescence, enzyme-linked immunosorbent, and immunoblot assays did not demonstrate sufficient specificity to distinguish between 9mi/I and Pris/I infections. Results of vaccine cross-challenge experiments showed a significant degree of protection between homologous and heterologous challenge strains. protection between homologous
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amano K., Williams J. C. Chemical and immunological characterization of lipopolysaccharides from phase I and phase II Coxiella burnetii. J Bacteriol. 1984 Dec;160(3):994–1002. doi: 10.1128/jb.160.3.994-1002.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baca O. G., Paretsky D. Q fever and Coxiella burnetii: a model for host-parasite interactions. Microbiol Rev. 1983 Jun;47(2):127–149. doi: 10.1128/mr.47.2.127-149.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baca O. G., Paretsky D. Some physiological and biochemical effects of a Coxiella burneti lipopolysaccharide preparation on guinea pigs. Infect Immun. 1974 May;9(5):939–945. doi: 10.1128/iai.9.5.939-945.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Behymer D. E., Biberstein E. L., Riemann H. P., Franti C. E., Sawyer M., Ruppanner R., Crenshaw G. L. Q fever (Coxiella burnetii) investigations in dairy cattle: challenge of immunity after vaccination. Am J Vet Res. 1976 Jun;37(6):631–634. [PubMed] [Google Scholar]
- CLARK W. H., LENNETTE E. H., RAILSBACK O. C., ROMER M. S. Q fever in California. VII. Clinical features in one hundred eighty cases. AMA Arch Intern Med. 1951 Aug;88(2):155–167. doi: 10.1001/archinte.1951.03810080023003. [DOI] [PubMed] [Google Scholar]
- D'Angelo L. J., Baker E. F., Schlosser W. From the Center for Disease Control: Q fever in the United States, 1948--1977. J Infect Dis. 1979 May;139(5):613–615. doi: 10.1093/infdis/139.5.613. [DOI] [PubMed] [Google Scholar]
- FISET P. Phase variation of Rickettsia (Coxiella) burneti; study of the antibody response in guinea pigs and rabbits. Can J Microbiol. 1957 Apr;3(3):435–445. doi: 10.1139/m57-046. [DOI] [PubMed] [Google Scholar]
- Fiset P., Ormsbee R. A., Silberman R., Peacock M., Spielman S. H. A microagglutination technique for detection and measurement of rickettsial antibodies. Acta Virol. 1969 Jan;13(1):60–66. [PubMed] [Google Scholar]
- Hackstadt T. Antigenic variation in the phase I lipopolysaccharide of Coxiella burnetii isolates. Infect Immun. 1986 Apr;52(1):337–340. doi: 10.1128/iai.52.1.337-340.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackstadt T., Peacock M. G., Hitchcock P. J., Cole R. L. Lipopolysaccharide variation in Coxiella burnetti: intrastrain heterogeneity in structure and antigenicity. Infect Immun. 1985 May;48(2):359–365. doi: 10.1128/iai.48.2.359-365.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackstadt T., Todd W. J., Caldwell H. D. Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae? J Bacteriol. 1985 Jan;161(1):25–31. doi: 10.1128/jb.161.1.25-31.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hahon N., Cooke K. O. Assay of Coxiella burnetii by enumeration of immunofluorescent infected cells. J Immunol. 1966 Oct;97(4):492–497. doi: 10.21236/ad0482256. [DOI] [PubMed] [Google Scholar]
- Heggers J. P., Billups L. H., Hinrichs D. J., Mallavia L. P. Pathophysiologic features of Q fever-infected guinea pigs. Am J Vet Res. 1975 Jul;36(7):1047–1052. [PubMed] [Google Scholar]
- Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson J. W., Eddy G. A., Pedersen C. E., Jr Biological properties of the M-44 strain of Coxiella burneti. J Infect Dis. 1976 Mar;133(3):334–338. doi: 10.1093/infdis/133.3.334. [DOI] [PubMed] [Google Scholar]
- KEENE W. R., SILBERMAN H. R., LANDY M. Observations on the pyrogenic response and its application to the bioassay of endotoxin. J Clin Invest. 1961 Feb;40:295–301. doi: 10.1172/JCI104256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kazár J., Schramek S. Sensitization of mice to rickettsial toxin by Coxiella burnetii. Acta Virol. 1984 Jul;28(4):309–316. [PubMed] [Google Scholar]
- Kishimoto R. A., Burger G. T. Appearance of cellular and humoral immunity in guinea pigs after infection with Coxiella burnetii administered in small-particle aerosols. Infect Immun. 1977 May;16(2):518–521. doi: 10.1128/iai.16.2.518-521.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUOTO L., CASEY M. L., PICKENS E. G. Q FEVER STUDIES IN MONTANA. DETECTION OF ASYMPTOMATIC INFECTION AMONG RESIDENTS OF INFECTED DAIRY PREMISES. Am J Epidemiol. 1965 May;81:356–369. doi: 10.1093/oxfordjournals.aje.a120522. [DOI] [PubMed] [Google Scholar]
- Marmion B. P., Ormsbee R. A., Kyrkou M., Wright J., Worswick D., Cameron S., Esterman A., Feery B., Collins W. Vaccine prophylaxis of abattoir-associated Q fever. Lancet. 1984 Dec 22;2(8417-8418):1411–1414. doi: 10.1016/s0140-6736(84)91617-9. [DOI] [PubMed] [Google Scholar]
- Morrison M. The determination of the exposed proteins on membranes by the use of lactoperoxidase. Methods Enzymol. 1974;32:103–109. doi: 10.1016/0076-6879(74)32013-7. [DOI] [PubMed] [Google Scholar]
- ORMSBEE R. A., BELL E. J., LACKMAN D. B., TALLENT G. THE INFLUENCE OF PHASE ON THE PROTECTIVE POTENCY OF Q FEVER VACCINE. J Immunol. 1964 Mar;92:404–412. [PubMed] [Google Scholar]
- Ormsbee R., Peacock M., Gerloff R., Tallent G., Wike D. Limits of rickettsial infectivity. Infect Immun. 1978 Jan;19(1):239–245. doi: 10.1128/iai.19.1.239-245.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PARETSKY D., DOWNS C. M., SALMON C. W. SOME BIOCHEMICAL CHANGES IN THE GUINEA PIG DURING INFECTION WITH COXIELLA BURNETII. J Bacteriol. 1964 Jul;88:137–142. doi: 10.1128/jb.88.1.137-142.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paul J. H. Use of hoechst dyes 33258 and 33342 for enumeration of attached and planktonic bacteria. Appl Environ Microbiol. 1982 Apr;43(4):939–944. doi: 10.1128/aem.43.4.939-944.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Philip R. N., Casper E. A., Ormsbee R. A., Peacock M. G., Burgdorfer W. Microimmunofluorescence test for the serological study of rocky mountain spotted fever and typhus. J Clin Microbiol. 1976 Jan;3(1):51–61. doi: 10.1128/jcm.3.1.51-61.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STOENNER H. G., LACKMAN D. B. The biologic properties of Coxiella burnetii isolated from rodents collected in Utah. Am J Hyg. 1960 Jan;71:45–51. doi: 10.1093/oxfordjournals.aje.a120088. [DOI] [PubMed] [Google Scholar]
- Samuel J. E., Frazier M. E., Mallavia L. P. Correlation of plasmid type and disease caused by Coxiella burnetii. Infect Immun. 1985 Sep;49(3):775–779. doi: 10.1128/iai.49.3.775-779.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schramek S., Brezina R. Characterization of an endotoxic lipopolysaccharide from Coxiella burnetii. Acta Virol. 1976 Apr;20(2):152–158. [PubMed] [Google Scholar]
- Schramek S., Kazar J., Sekeyova Z., Freudenberg M. A., Galanos C. Induction of hyperreactivity to endotoxin in mice by Coxiella burnetii. Infect Immun. 1984 Sep;45(3):713–717. doi: 10.1128/iai.45.3.713-717.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schramek S., Mayer H. Different sugar compositions of lipopolysaccharides isolated from phase I and pure phase II cells of Coxiella burnetii. Infect Immun. 1982 Oct;38(1):53–57. doi: 10.1128/iai.38.1.53-57.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
- Williams J. C., Peacock M. G., McCaul T. F. Immunological and biological characterization of Coxiella burnetii, phases I and II, separated from host components. Infect Immun. 1981 May;32(2):840–851. doi: 10.1128/iai.32.2.840-851.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wisniewski H. J., Kleiman M. M., Lackman D. B., Krumbiegel E. R. Demonstration of inapparent infection with disease agents common to animals and man. Health Lab Sci. 1969 Jul;6(3):173–177. [PubMed] [Google Scholar]


