Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1987 May;55(5):1264–1273. doi: 10.1128/iai.55.5.1264-1273.1987

Characterization of a rat salivary sialoglycoprotein complex which agglutinates Streptococcus mutans.

C M Brack, E C Reynolds
PMCID: PMC260500  PMID: 3570462

Abstract

Rat saliva agglutinated Streptococcus mutans Ingbritt and NCTC 10449 and Streptococcus sanguis NCTC 7864 but not S. mutans NCTC 10921, GS 5, or LM 7, Streptococcus sobrinus 6715-13 or OMZ 65, or Streptococcus cricetus HS 6, as measured turbidometrically. The specificity of agglutination by rat saliva was the same as that by human saliva. Agglutination was associated with a mucin complex (rat salivary agglutinin complex [rS-A]) of sulfated sialoglycoproteins, with a trace of associated lipid and an apparent Mr of 1.6 X 10(6), isolated by gel-filtration Fast Protein Liquid Chromatography. The complex was dissociated in a high-ionic-strength buffer containing 6 M urea and then fractionated by gel filtration and anion-exchange Fast Protein Liquid Chromatography into four sulfated sialoglycoprotein components, designated rS-A-1Q1, rS-A-1Q2, rS-A-1Q3, and rS-A-2, with rS-A-1Q2 being polydisperse through differential glycosylation of the polypeptide backbone. The dissociation destroyed agglutination activity. The polypeptide backbones contained up to 42% serine plus threonine and up to 40% glycine plus alanine plus proline plus valine. The carbohydrate moiety of the rS-A sialoglycoproteins consisted of N-acetylgalactosamine, sialate, galactose, fucose, N-acetylglucosamine, and small amounts of mannose, with the predominant sugar being N-acetylgalactosamine. Agglutination was inhibited by 1 mM EDTA but was restored by 1.5 mM CaCl2. Agglutination was also inhibited by 5 mM CaCl2; nonimmune sera; cationic polymers; and wheat germ, lentil, soybean, and peanut lectins. However, agglutination was not affected by lipoteichoic acid, various anionic proteins, or various sugars. Neuraminidase treatment of rS-A did not affect activity, but tryptic digestion of S. mutans did prevent agglutination. The results are consistent with calcium bridging the negative groups within the rS-A complex and allowing the approach of rS-A to the bacterial cell surface to effect a specific conformational attachment.

Full text

PDF
1264

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babu J. P., Beachey E. H., Hasty D. L., Simpson W. A. Isolation and characterization of a 60-kilodalton salivary glycoprotein with agglutinating activity against strains of Streptococcus mutans. Infect Immun. 1986 Feb;51(2):405–413. doi: 10.1128/iai.51.2.405-413.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bratthall D. Demonstration of five serological groups of streptococcal strains resembling Streptococcus mutans. Odontol Revy. 1970;21(2):143–152. [PubMed] [Google Scholar]
  3. Clarke A. E., Denborough M. A. The interaction of concanavalin A with blood-group-substance glycoproteins from human secretions. Biochem J. 1971 Mar;121(5):811–816. doi: 10.1042/bj1210811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DODGSON K. S., PRICE R. G. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J. 1962 Jul;84:106–110. doi: 10.1042/bj0840106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ericson D., Bratthall D., Björck L., Myhre E., Kronvall G. Interactions between human serum proteins and oral streptococci reveal occurrence of receptors for aggregated beta 2-microglobulin. Infect Immun. 1979 Jul;25(1):279–283. doi: 10.1128/iai.25.1.279-283.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ericson T., Pruitt K., Wedel H. The reaction of salivary substances with bacteria. J Oral Pathol. 1975 Dec;4(6):307–323. doi: 10.1111/j.1600-0714.1975.tb01748.x. [DOI] [PubMed] [Google Scholar]
  7. Ericson T., Rundegren J. Characterization of a salivary agglutinin reacting with a serotype c strain of Streptococcus mutans. Eur J Biochem. 1983 Jun 15;133(2):255–261. doi: 10.1111/j.1432-1033.1983.tb07456.x. [DOI] [PubMed] [Google Scholar]
  8. Gibbons R. J., Fitzgerald R. J. Dextran-induced agglutination of Streptococcus mutans, and its potential role in the formation of microbial dental plaques. J Bacteriol. 1969 May;98(2):341–346. doi: 10.1128/jb.98.2.341-346.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hardy L. N., Knox K. W., Brown R. A., Wicken A. J., Fitzgerald R. J. Comparison of extracellular protein profiles of seven serotypes of mutans streptococci grown under controlled conditions. J Gen Microbiol. 1986 May;132(5):1389–1400. doi: 10.1099/00221287-132-5-1389. [DOI] [PubMed] [Google Scholar]
  10. Hill H. D., Jr, Reynolds J. A., Hill R. L. Purification, composition, molecular weight, and subunit structure of ovine submaxillary mucin. J Biol Chem. 1977 Jun 10;252(11):3791–3798. [PubMed] [Google Scholar]
  11. Hogg S. D., Embery G. The isolation and partial characterization of a sulphated glycoprotein from human whole saliva which aggregates strains of Streptococcus sanguis but not Streptococcus mutans. Arch Oral Biol. 1979;24(10-11):791–797. doi: 10.1016/0003-9969(79)90040-2. [DOI] [PubMed] [Google Scholar]
  12. Kashket S., Donaldson C. G. Saliva-induced aggregation of oral streptococci. J Bacteriol. 1972 Dec;112(3):1127–1133. doi: 10.1128/jb.112.3.1127-1133.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lee Y. C., Johnson G. S., White B., Scocca J. An accelerated system for analysis of neutral sugars in complex carbohydrates. Anal Biochem. 1971 Oct;43(2):640–643. doi: 10.1016/0003-2697(71)90301-0. [DOI] [PubMed] [Google Scholar]
  16. Levine M. J., Herzberg M. C., Levine M. S., Ellison S. A., Stinson M. W., Li H. C., van Dyke T. Specificity of salivary-bacterial interactions: role of terminal sialic acid residues in the interaction of salivary glycoproteins with Streptococcus sanguis and Streptococcus mutans. Infect Immun. 1978 Jan;19(1):107–115. doi: 10.1128/iai.19.1.107-115.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Magnusson I., Ericson T. Effect of salivary agglutinins of reactions between hydroxyapatite and a serotype c strain of Streptococcus mutans. Caries Res. 1976;10(4):273–286. doi: 10.1159/000260208. [DOI] [PubMed] [Google Scholar]
  18. Malamud D., Brown C., Goldman R. Inhibition of bacterial aggregation by serum- and blood-derived proteins. Infect Immun. 1984 Jan;43(1):386–390. doi: 10.1128/iai.43.1.386-390.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nonaka H., Yoshii J., Nakamura R., Tsunemitsu A. The effects of human saliva and concanavalin A on the agglutination of oral Streptococci. Arch Oral Biol. 1981;26(2):127–130. doi: 10.1016/0003-9969(81)90082-0. [DOI] [PubMed] [Google Scholar]
  20. Oemrawsingh I., Roukema P. A. Isolation, purification and chemical characterization of mucins from human submandibular glands. Arch Oral Biol. 1974 Aug;19(8):615–626. doi: 10.1016/0003-9969(74)90129-0. [DOI] [PubMed] [Google Scholar]
  21. Perch B., Kjems E., Ravn T. Biochemical and serological properties of Streptococcus mutans from various human and animal sources. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Jun;82(3):357–370. doi: 10.1111/j.1699-0463.1974.tb02338.x. [DOI] [PubMed] [Google Scholar]
  22. Reynolds E. C., Wong A. Effect of adsorbed protein on hydroxyapatite zeta potential and Streptococcus mutans adherence. Infect Immun. 1983 Mar;39(3):1285–1290. doi: 10.1128/iai.39.3.1285-1290.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reynolds E. C., del Rio A. Effect of casein and whey-protein solutions on caries experience and feeding patterns of the rat. Arch Oral Biol. 1984;29(11):927–933. doi: 10.1016/0003-9969(84)90093-1. [DOI] [PubMed] [Google Scholar]
  24. Rundegren J., Ericson T. An evaluation of the specificity of salivary agglutinins. J Oral Pathol. 1981 Aug;10(4):261–268. doi: 10.1111/j.1600-0714.1981.tb01272.x. [DOI] [PubMed] [Google Scholar]
  25. Simonson L. G., Reiher D. A. Effect of human saliva and various compounds on the adsorption of the bacterium Streptococcus mutans to hydroxyapatite. Arch Oral Biol. 1981;26(2):143–146. doi: 10.1016/0003-9969(81)90085-6. [DOI] [PubMed] [Google Scholar]
  26. Slomiany B. L., Murty V. L., Takagi A., Tsukada H., Kosmala M., Slomiany A. Fatty acid acylation of salivary mucin in rat submandibular glands. Arch Biochem Biophys. 1985 Nov 1;242(2):402–410. doi: 10.1016/0003-9861(85)90224-3. [DOI] [PubMed] [Google Scholar]
  27. Slomiany B. L., Witas H., Murty V. L., Slomiany A., Mandel I. D. Association of lipids with proteins and glycoproteins in human saliva. J Dent Res. 1983 Jan;62(1):24–27. doi: 10.1177/00220345830620010601. [DOI] [PubMed] [Google Scholar]
  28. TOURTELLOTTE W. W., VANDER A. J., SKRENTNY B. A., DEJONG R. N. A study of lipids in the cerebrospinal fluid. II. The determination of total lipids. J Lab Clin Med. 1958 Sep;52(3):481–490. [PubMed] [Google Scholar]
  29. Tabak L. A., Levine M. J., Mandel I. D., Ellison S. A. Role of salivary mucins in the protection of the oral cavity. J Oral Pathol. 1982 Feb;11(1):1–17. doi: 10.1111/j.1600-0714.1982.tb00138.x. [DOI] [PubMed] [Google Scholar]
  30. Tabak L. A., Mirels L., Monte L. D., Ridall A. L., Levine M. J., Loomis R. E., Lindauer F., Reddy M. S., Baum B. J. Isolation and characterization of a mucin-glycoprotein from rat submandibular glands. Arch Biochem Biophys. 1985 Nov 1;242(2):383–392. doi: 10.1016/0003-9861(85)90222-x. [DOI] [PubMed] [Google Scholar]
  31. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  32. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
  33. Zimmerman C. L., Appella E., Pisano J. J. Rapid analysis of amino acid phenylthiohydantoins by high-performance liquid chromatography. Anal Biochem. 1977 Feb;77(2):569–573. doi: 10.1016/0003-2697(77)90276-7. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES