Abstract
Clostridium difficile is an agent involved in the development of antibiotic-associated pseudomembranous colitis. The purpose of this work was to investigate the role of volatile fatty acids (VFAs) in resistance to colonization by C. difficile by using a gnotobiotic animal model. Accordingly, germfree mice were associated with different hamster flora, and the VFAs in their cecal contents were measured by gas chromatography. The results showed that VFAs were produced mainly by the intestinal flora, especially by the strictly anaerobic bacteria. In these associated mice, the concentrations of acetic, propionic, and butyric acids were higher than those of other acids, but at pH 6.8 the MICs of these three acids in vitro for C. difficile were more than 200 mu eq/ml. In gnotobiotic mice monoassociated with C. difficile and in the isolated ceca of these mice, VFAs did not inhibit the growth of C. difficile. In gnotobiotic mice which were diassociated with C. difficile and C. butyricum and given drinking water with a lactose concentration of 20%, the cecal contents included about the same amount of butyric acid as did those of the monoassociated mice, although the population of C. difficile remained the same. Therefore, it is suggested that VFAs alone cannot inhibit intestinal colonization by C. difficile and that, consequently, other inhibitory mechanisms are also present.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOHNHOFF M., MILLER C. P., MARTIN W. R. RESISTANCE OF THE MOUSE'S INTESTINAL TRACT TO EXPERIMENTAL SALMONELLA INFECTION. I. FACTORS WHICH INTERFERE WITH THE INITIATION OF INFECTION BY ORAL INOCULATION. J Exp Med. 1964 Nov 1;120:805–816. doi: 10.1084/jem.120.5.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartlett J. G., Chang T. W., Gurwith M., Gorbach S. L., Onderdonk A. B. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med. 1978 Mar 9;298(10):531–534. doi: 10.1056/NEJM197803092981003. [DOI] [PubMed] [Google Scholar]
- Bartlett J. G., Gorbach S. L. Pseudomembranous enterocolitis (antibiotic-related colitis). Adv Intern Med. 1977;22:455–476. [PubMed] [Google Scholar]
- Ducluzeau R., Dubos F., Raibaud P. Effet antagoniste d'une souche de Lactobacillus sur une souche de Ristella sp. dans le tube digestif de souris "gnotoxeniques" absorbant du lactose. Ann Inst Pasteur (Paris) 1971 Dec;121(6):777–794. [PubMed] [Google Scholar]
- Hentges D. J., Maier B. R. Inhibition of Shigella flexneri by the Normal Intestinal Flora III. Interactions with Bacteroides fragilis Strains in Vitro. Infect Immun. 1970 Oct;2(4):364–370. doi: 10.1128/iai.2.4.364-370.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Høverstad T., Midtvedt T., Bøhmer T. Short-chain fatty acids in intestinal content of germfree mice monocontaminated with Escherichia coli or Clostridium difficile. Scand J Gastroenterol. 1985 Apr;20(3):373–380. doi: 10.3109/00365528509091667. [DOI] [PubMed] [Google Scholar]
- Imai A., Morishita K. Relationships of volatile components and bacterial flora in mouse caecum. Lab Anim. 1983 Jan;17(1):45–49. doi: 10.1258/002367783781070911. [DOI] [PubMed] [Google Scholar]
- Larson H. E., Price A. B., Honour P., Borriello S. P. Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet. 1978 May 20;1(8073):1063–1066. doi: 10.1016/s0140-6736(78)90912-1. [DOI] [PubMed] [Google Scholar]
- Lee A., Gemmell E. Changes in the mouse intestinal microflora during weaning: role of volatile fatty acids. Infect Immun. 1972 Jan;5(1):1–7. doi: 10.1128/iai.5.1.1-7.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levison M. E. Effect of colon flora and short-chain fatty acids on growth in vitro of Pseudomonas aeruginsoa and Enterobacteriaceae. Infect Immun. 1973 Jul;8(1):30–35. doi: 10.1128/iai.8.1.30-35.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lusk R. H., Fekety R., Silva J., Browne R. A., Ringler D. H., Abrams G. D. Clindamycin-induced enterocolitis in hamsters. J Infect Dis. 1978 Apr;137(4):464–475. doi: 10.1093/infdis/137.4.464. [DOI] [PubMed] [Google Scholar]
- Moore W. E., Cato E. P., Holdeman L. V. Anaerobic bacteria of the gastrointestinal flora and their occurrence in clinical infections. J Infect Dis. 1969 Jun;119(6):641–649. doi: 10.1093/infdis/119.6.641. [DOI] [PubMed] [Google Scholar]
- Popoff M. R., Szylit O., Ravisse P., Dabard J., Ohayon H. Experimental cecitis in gnotoxenic chickens monoassociated with Clostridium butyricum strains isolated from patients with neonatal necrotizing enterocolitis. Infect Immun. 1985 Mar;47(3):697–703. doi: 10.1128/iai.47.3.697-703.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REINER L., SCHLESINGER M. J., MILLER G. M. Pseudomembranous colitis following aureomycin and chloramphenicol. AMA Arch Pathol. 1952 Jul;54(1):39–67. [PubMed] [Google Scholar]
- Rolfe R. D., Iaconis J. P. Intestinal colonization of infant hamsters with Clostridium difficile. Infect Immun. 1983 Nov;42(2):480–486. doi: 10.1128/iai.42.2.480-486.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rolfe R. D. Role of volatile fatty acids in colonization resistance to Clostridium difficile. Infect Immun. 1984 Jul;45(1):185–191. doi: 10.1128/iai.45.1.185-191.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Su W. J., Bourlioux P., Bournaud M., Besnier M. O., Fourniat J. Mise au point d'un modèle expérimental animal permettant l'etude de la microflore coecale du hamster, antagoniste de Clostridium difficile. Ann Inst Pasteur Microbiol. 1986 Jan-Feb;137A(1):89–96. doi: 10.1016/s0769-2609(86)80008-4. [DOI] [PubMed] [Google Scholar]
- Sullivan N. M., Pellett S., Wilkins T. D. Purification and characterization of toxins A and B of Clostridium difficile. Infect Immun. 1982 Mar;35(3):1032–1040. doi: 10.1128/iai.35.3.1032-1040.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
