Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1987 Aug;55(8):1900–1905. doi: 10.1128/iai.55.8.1900-1905.1987

Monoclonal antibodies to the extracellular glucosyltransferases from Streptococcus sobrinus 6715.

M M McCabe, M Alberts, J Stein
PMCID: PMC260622  PMID: 2956196

Abstract

Murine monoclonal antibodies (MAbs) were raised against the glucosyltransferases (GTFs) of Streptococcus sobrinus 6715. The antibody panels included MAbs raised against the primer-independent, soluble product enzyme (GTF-Si) which did not cross-react with other GTFs, as well as MAbs raised against the primer-dependent, soluble product enzyme (GTF-Sd) which recognized both GTF-Si and GTF-Sd, thus indicating that these catalytically distinct enzymes share epitopes. MAbs raised against GTF-I recognized several forms of GTF-I and did not cross-react with the GTF-S enzymes. None of the MAbs recognized the major glucan-binding protein of S. sobrinus. Two MAbs inhibited glucan synthesis, one blocking primer synthesis by GTF-Si by 89% and the second inhibiting that by GTF-I by 92%.

Full text

PDF
1900

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  2. Ciardi J. E., Hageage G. J., Jr, Wittenberger C. L. Multicomponent nature of the glucosyltransferase system of Streptococcus mutans. J Dent Res. 1976 Apr;55(Spec No):C87–C96. doi: 10.1177/002203457605500330011. [DOI] [PubMed] [Google Scholar]
  3. Freedman M. L., Tanzer J. M. Dissociation of plaque formation from glucan-induced agglutination in mutants of Streptococcus mutans. Infect Immun. 1974 Jul;10(1):189–196. doi: 10.1128/iai.10.1.189-196.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fukui K., Fukui Y., Moriyama T. Purification and properties of dextransucrase and invertase from Streptococcus mutans. J Bacteriol. 1974 Jun;118(3):796–804. doi: 10.1128/jb.118.3.796-804.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Furuta T., Nisizawa T., Chiba J., Hamada S. Production of monoclonal antibody against a glucosyltransferase of Streptococcus mutans 6715. Infect Immun. 1983 Aug;41(2):872–875. doi: 10.1128/iai.41.2.872-875.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grahame D. A., Mayer R. M. The origin and composition of multiple forms of dextransucrase from Streptococcus sanguis. Biochim Biophys Acta. 1984 Apr 27;786(1-2):42–48. doi: 10.1016/0167-4838(84)90151-1. [DOI] [PubMed] [Google Scholar]
  7. Hamada S., Slade H. D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev. 1980 Jun;44(2):331–384. doi: 10.1128/mr.44.2.331-384.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamelik R. M., McCabe M. M. An endodextranase inhibitor from batch cultures of streptococcus mutans. Biochem Biophys Res Commun. 1982 Jun 15;106(3):875–880. doi: 10.1016/0006-291x(82)91792-2. [DOI] [PubMed] [Google Scholar]
  9. McCabe M. M., Hamelik R. M. An enzyme from Streptococcus mutans forms branches on dextran in the absence of sucrose. Biochem Biophys Res Commun. 1983 Aug 30;115(1):287–294. doi: 10.1016/0006-291x(83)91002-1. [DOI] [PubMed] [Google Scholar]
  10. McCabe M. M., Hamelik R. M., Smith E. E. Purification of dextran-binding protein from cariogenic Streptococcus mutans. Biochem Biophys Res Commun. 1977 Sep 9;78(1):273–278. doi: 10.1016/0006-291x(77)91250-5. [DOI] [PubMed] [Google Scholar]
  11. McCabe M. M. Purification and characterization of a primer-independent glucosyltransferase from Streptococcus mutans 6715-13 mutant 27. Infect Immun. 1985 Dec;50(3):771–777. doi: 10.1128/iai.50.3.771-777.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McCabe M. M., Smith E. E. Origin of the cell-associated dextransucrase of Streptococcus mutans. Infect Immun. 1973 Jun;7(6):829–838. doi: 10.1128/iai.7.6.829-838.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reinhart M. P., Malamud D. Protein transfer from isoelectric focusing Gels: the native blot. Anal Biochem. 1982 Jul 1;123(2):229–235. doi: 10.1016/0003-2697(82)90439-0. [DOI] [PubMed] [Google Scholar]
  14. Russell R. R. Glycosyltransferases of Streptococcus mutans strain Ingbritt. Microbios. 1978;23(93-94):136–146. [PubMed] [Google Scholar]
  15. Shimamura A., Tsumori H., Mukasa H. Three kinds of extracellular glucosyltransferases from Streptococcus mutans 6715 (serotype g). FEBS Lett. 1983 Jun 27;157(1):79–84. doi: 10.1016/0014-5793(83)81120-x. [DOI] [PubMed] [Google Scholar]
  16. Smith D. J., Taubman M. A. Antigenic relatedness of glucosyltransferase enzymes from streptococcus mutans. Infect Immun. 1977 Jan;15(1):91–103. doi: 10.1128/iai.15.1.91-103.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tsumori H., Shimamura A., Mukasa H. Comparative study of Streptococcus mutans extracellular glycosyltransferases by isoelectric focusing. J Gen Microbiol. 1983 Oct;129(10):3261–3269. doi: 10.1099/00221287-129-10-3261. [DOI] [PubMed] [Google Scholar]
  18. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  19. Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem. 1969 Jul;30(1):148–152. doi: 10.1016/0003-2697(69)90383-2. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES