Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1987 Sep;55(9):2066–2073. doi: 10.1128/iai.55.9.2066-2073.1987

Activation of the classical and alternative pathways of complement by Treponema pallidum subsp. pallidum and Treponema vincentii.

T J Fitzgerald
PMCID: PMC260658  PMID: 3305362

Abstract

Both in vivo and in vitro studies have indicated that complement plays an important role in the syphilitic immune responses. Few quantitative data are available concerning activation of the classical pathway by Treponema pallidum subsp. pallidum, and no information is available on treponemal activation of the alternative pathway. Activation of both pathways was compared by using T. pallidum subsp. pallidum and the nonpathogen T. vincentii. With rabbit and human sources of complement, both organisms rapidly activated the classical pathway, as shown by hemolysis of sensitized sheep erythrocytes and by the generation of soluble C4a. With human sources of complement, both organisms also activated the alternative pathway, as shown by hemolysis of rabbit erythrocytes and by the generation of soluble C3a in the presence of magnesium ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). During incubation, organisms remained actively mobile and did not lyse, indicating that activation was a function of complement reactivity with the intact outer treponemal surface. In addition, freshly harvested T. pallidum subsp. pallidum immediately activated both pathways of complement; preincubation of organisms did not enhance complement reactivity. T. vincentii was a more potent activator of this pathway. T. pallidum subsp. pallidum contained almost four times as much surface sialic acid as T. vincentii did. When sialic acid was enzymatically removed from T. pallidum subsp. pallidum, enhanced activation of the alternative pathway was detected. It is proposed that T. pallidum subsp. pallidum retards complement-mediated damage by the alternative pathway through surface-associated sialic acid. This may be an important virulence determinant that enables these organisms to readily disseminate through the bloodstream to infect other tissues.

Full text

PDF
2066

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderete J. F., Baseman J. B. Surface-associated host proteins on virulent Treponema pallidum. Infect Immun. 1979 Dec;26(3):1048–1056. doi: 10.1128/iai.26.3.1048-1056.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Azadegan A. A., Tabor D. R., Schell R. F., LeFrock J. L. Cobra venom factor abrogates passive humoral resistance to syphilitic infection in hamsters. Infect Immun. 1984 Jun;44(3):740–742. doi: 10.1128/iai.44.3.740-742.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baughn R. E., Adams C. B., Musher D. M. Immune complexes in experimental syphilis: a methodologic evaluation. Sex Transm Dis. 1982 Oct-Dec;9(4):170–177. doi: 10.1097/00007435-198210000-00002. [DOI] [PubMed] [Google Scholar]
  4. Baughn R. E., Tung K. S., Musher D. M. Detection of circulating immune complexes in the sera of rabbits with experimental syphilis: possible role in immunoregulation. Infect Immun. 1980 Aug;29(2):575–582. doi: 10.1128/iai.29.2.575-582.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bishop N. H., Miller J. N. Humoral immunity in experimental syphilis. II. The relationship of neutralizing factors in immune serum to acquired resistance. J Immunol. 1976 Jul;117(1):197–207. [PubMed] [Google Scholar]
  6. CHRISTIANSEN S. Protective layer covering pathogenic treponemata. Lancet. 1963 Feb 23;1(7278):423–425. doi: 10.1016/s0140-6736(63)92309-2. [DOI] [PubMed] [Google Scholar]
  7. Chang N. S., Boackle R. J., Armand G. Hyaluronic acid-complement interactions--I. Reversible heat-induced anticomplementary activity. Mol Immunol. 1985 Apr;22(4):391–397. doi: 10.1016/0161-5890(85)90123-3. [DOI] [PubMed] [Google Scholar]
  8. Chang N. S., Boackle R. J. Hyaluronic acid-complement interactions--II. Role of divalent cations and gelatin. Mol Immunol. 1985 Aug;22(8):843–848. doi: 10.1016/0161-5890(85)90068-9. [DOI] [PubMed] [Google Scholar]
  9. Devine D. V., Falk R. J., Balber A. E. Restriction of the alternative pathway of human complement by intact Trypanosoma brucei subsp. gambiense. Infect Immun. 1986 Apr;52(1):223–229. doi: 10.1128/iai.52.1.223-229.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fearon D. T., Austen K. F. Current concepts in immunology: the alternative pathway of complement--a system for host resistance to microbial infection. N Engl J Med. 1980 Jul 31;303(5):259–263. doi: 10.1056/NEJM198007313030505. [DOI] [PubMed] [Google Scholar]
  11. Fearon D. T. Regulation by membrane sialic acid of beta1H-dependent decay-dissociation of amplification C3 convertase of the alternative complement pathway. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1971–1975. doi: 10.1073/pnas.75.4.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fine D. P., Marney S. R., Jr, Colley D. G., Sergent J. S., Des Prez R. M. C3 shunt activation in human serum chelated with EGTA. J Immunol. 1972 Oct;109(4):807–809. [PubMed] [Google Scholar]
  13. Fitzgerald T. J., Cleveland P., Johnson R. C., Miller J. N., Sykes J. A. Scanning electron microscopy of Treponema pallidum (Nichols strain) attached to cultured mammalian cells. J Bacteriol. 1977 Jun;130(3):1333–1344. doi: 10.1128/jb.130.3.1333-1344.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fitzgerald T. J., Gannon E. M. Further evidence for hyaluronidase activity of Treponema pallidum. Can J Microbiol. 1983 Nov;29(11):1507–1513. doi: 10.1139/m83-232. [DOI] [PubMed] [Google Scholar]
  15. Fitzgerald T. J., Johnson R. C., Miller J. N., Sykes J. A. Characterization of the attachment of Treponema pallidum (Nichols strain) to cultured mammalian cells and the potential relationship of attachment to pathogenicity. Infect Immun. 1977 Nov;18(2):467–478. doi: 10.1128/iai.18.2.467-478.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fitzgerald T. J., Johnson R. C. Surface mucopolysaccharides of Treponema pallidum. Infect Immun. 1979 Apr;24(1):244–251. doi: 10.1128/iai.24.1.244-251.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fitzgerald T. J., Johnson R. C., Wolff E. T. Sulfhydryl oxidation using procedures and experimental conditions commonly used for Treponema pallidum. Br J Vener Dis. 1980 Jun;56(3):129–136. doi: 10.1136/sti.56.3.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fitzgerald T. J., Miller J. N., Repesh L. A., Rice M., Urquhart A. Binding of glycosaminoglycans to the surface of Treponema pallidum and subsequent effects on complement interactions between antigen and antibody. Genitourin Med. 1985 Feb;61(1):13–20. doi: 10.1136/sti.61.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fitzgerald T. Immobilization and neutralization of Treponema pallidum attached to cultured mammalian cells. Can J Microbiol. 1985 Dec;31(12):1152–1156. doi: 10.1139/m85-217. [DOI] [PubMed] [Google Scholar]
  20. HARDY P. H., Jr, NELL E. E. Study of the antigenic structure of Treponema pallidum by specific agglutination. Am J Hyg. 1957 Sep;66(2):160–172. doi: 10.1093/oxfordjournals.aje.a119893. [DOI] [PubMed] [Google Scholar]
  21. Hovind-Hougen K., Birch-Andersen A., Nielsen H. A. Electron microscopy of treponemes subjected to the Treponema pallidum immobilization (TPI) test. II. Immunoelectron microscopy. Acta Pathol Microbiol Scand C. 1979 Aug;87C(4):263–268. [PubMed] [Google Scholar]
  22. Joiner K. A., Hammer C. H., Brown E. J., Frank M. M. Studies on the mechanism of bacterial resistance to complement-mediated killing. II. C8 and C9 release C5b67 from the surface of Salmonella minnesota S218 because the terminal complex does not insert into the bacterial outer membrane. J Exp Med. 1982 Mar 1;155(3):809–819. doi: 10.1084/jem.155.3.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Joiner K. A., Warren K. A., Brown E. J., Swanson J., Frank M. M. Studies on the mechanism of bacterial resistance to complement-mediated killing. IV. C5b-9 forms high molecular weight complexes with bacterial outer membrane constituents on serum-resistant but not on serum-sensitive Neisseria gonorrhoeae. J Immunol. 1983 Sep;131(3):1443–1451. [PubMed] [Google Scholar]
  24. Joiner K., Brown E., Hammer C., Warren K., Frank M. Studies on the mechanism of bacterial resistance to complement-mediated killing. III. C5b-9 deposits stably on rough and type 7 S. pneumoniae without causing bacterial killing. J Immunol. 1983 Feb;130(2):845–849. [PubMed] [Google Scholar]
  25. Jones R. H., Nevin T. A., Guest W. J., Logan L. C. Lytic effect of trypsin, lysozyme, and complement on Treponema pallidum. Br J Vener Dis. 1968 Sep;44(3):193–200. doi: 10.1136/sti.44.3.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jorizzo J. L., McNeely M. C., Baughn R. E., Solomon A. R., Cavallo T., Smith E. B. Role of circulating immune complexes in human secondary syphilis. J Infect Dis. 1986 Jun;153(6):1014–1022. doi: 10.1093/infdis/153.6.1014. [DOI] [PubMed] [Google Scholar]
  27. Julian A. J., Logan L. C., Norins L. C. Early syphilis: immunoglobulins reactive in immunofluorescence and other serologic tests. J Immunol. 1969 May;102(5):1250–1259. [PubMed] [Google Scholar]
  28. Logan L. C. Rabbit globulin and antiglobulin factors associated with Treponema pallidum growth in rabbits. Br J Vener Dis. 1974 Dec;50(6):421–427. doi: 10.1136/sti.50.6.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. METZGER M., HARDY P. H., Jr, NELL E. E. Influence of lysozyme upon the treponeme immobilization reaction. Am J Hyg. 1961 Mar;73:236–244. doi: 10.1093/oxfordjournals.aje.a120182. [DOI] [PubMed] [Google Scholar]
  30. Matsuda T., Seya T., Nagasawa S. Location of the inter-chain disulfide bonds of the third component of human complement. Biochem Biophys Res Commun. 1985 Feb 28;127(1):264–269. doi: 10.1016/s0006-291x(85)80153-4. [DOI] [PubMed] [Google Scholar]
  31. Miller J. N. Development of an experimental syphilis vaccine. Med Clin North Am. 1972 Sep;56(5):1217–1220. doi: 10.1016/s0025-7125(16)32347-1. [DOI] [PubMed] [Google Scholar]
  32. Pangburn M. K., Müller-Eberhard H. J. Complement C3 convertase: cell surface restriction of beta1H control and generation of restriction on neuraminidase-treated cells. Proc Natl Acad Sci U S A. 1978 May;75(5):2416–2420. doi: 10.1073/pnas.75.5.2416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Platts-Mills T. A., Ishizaka K. Activation of the alternate pathway of human complements by rabbit cells. J Immunol. 1974 Jul;113(1):348–358. [PubMed] [Google Scholar]
  34. Pluschke G., Achtman M. Degree of antibody-independent activation of the classical complement pathway by K1 Escherichia coli differs with O antigen type and correlates with virulence of meningitis in newborns. Infect Immun. 1984 Feb;43(2):684–692. doi: 10.1128/iai.43.2.684-692.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Radolf J. D., Fehniger T. E., Silverblatt F. J., Miller J. N., Lovett M. A. The surface of virulent Treponema pallidum: resistance to antibody binding in the absence of complement and surface association of recombinant antigen 4D. Infect Immun. 1986 May;52(2):579–585. doi: 10.1128/iai.52.2.579-585.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rice M., Fitzgerald T. J. Detection and functional characterization of early appearing antibodies in rabbits with experimental syphilis. Can J Microbiol. 1985 Jan;31(1):62–67. doi: 10.1139/m85-013. [DOI] [PubMed] [Google Scholar]
  37. Rice M., Fitzgerald T. J. Immune immobilization of Treponema pallidum: antibody and complement interactions revisited. Can J Microbiol. 1985 Dec;31(12):1147–1151. doi: 10.1139/m85-216. [DOI] [PubMed] [Google Scholar]
  38. Seya T., Nagasawa S., Atkinson J. P. Location of the interchain disulfide bonds of the fourth component of human complement (C4): evidence based on the liberation of fragments secondary to thiol-disulfide interchange reactions. J Immunol. 1986 Jun 1;136(11):4152–4156. [PubMed] [Google Scholar]
  39. Steiner B. M., Schell R. F., Harris O. N. The effect of C3 depletion on resistance of hamsters to infection with the yaws spirochete. Sex Transm Dis. 1986 Oct-Dec;13(4):245–250. doi: 10.1097/00007435-198610000-00007. [DOI] [PubMed] [Google Scholar]
  40. Wagner J. L., Hugli T. E. Radioimmunoassay for anaphylatoxins: a sensitive method for determining complement activation products in biological fluids. Anal Biochem. 1984 Jan;136(1):75–88. doi: 10.1016/0003-2697(84)90308-7. [DOI] [PubMed] [Google Scholar]
  41. Wicher K., Wicher V., Gruhn R. F. Differences in susceptibility to infection with Treponema pallidum (Nichols) between five strains of guinea pig. Genitourin Med. 1985 Feb;61(1):21–26. doi: 10.1136/sti.61.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wicher K., Wos S. M., Wicher V. Kinetics of antibody response to polypeptides of pathogenic and nonpathogenic treponemes in experimental syphilis. Sex Transm Dis. 1986 Oct-Dec;13(4):251–257. doi: 10.1097/00007435-198610000-00008. [DOI] [PubMed] [Google Scholar]
  43. Wilkinson A. E., Rayner C. F. Studies on the fluorescent treponemal antibody (FTA) test. Br J Vener Dis. 1966 Mar;42(1):8–15. doi: 10.1136/sti.42.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zeigler J. A., Jones A. M., Jones R. H., Kubica K. M. Demonstration of extracellular material at the surface of pathogenic T. pallidum cells. Br J Vener Dis. 1976 Feb;52(1):1–8. doi: 10.1136/sti.52.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES