Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1989 Oct;57(10):3009–3013. doi: 10.1128/iai.57.10.3009-3013.1989

Regulation of serum tumor necrosis factor in glucocorticoid-sensitive and -resistant rodent endotoxin shock models.

S H Zuckerman 1, A M Bendele 1
PMCID: PMC260763  PMID: 2777371

Abstract

Bolus injection of lethal or sublethal doses of endotoxin or lipopolysaccharide (LPS) results in the rapid and transient rise in tumor necrosis factor (TNF) levels in serum in mammals. TNF levels peak between 1 and 2 h after LPS injection in mice and guinea pigs and approach basal levels by 6 h. Although the kinetics of TNF in serum appear similar between these two species, guinea pigs respond to a lethal dose of LPS of 20 mg/kg by producing approximately 10-fold more TNF than mice do. These two endotoxin shock models also differ in their sensitivity to glucocorticoids. TNF levels in serum are not reduced in the lethal endotoxin shock model in guinea pigs after treatment with dexamethasone at 25 mg/kg. In contrast, TNF levels in mouse serum are inhibited by more than 90% after treatment with dexamethasone at 3 mg/kg. Coincident with the TNF peak in serum is a leukopenia which approaches control levels by 6 h in dexamethasone-treated mice, while remaining depressed in dexamethasone-treated guinea pigs. Treatment with dexamethasone at 25 mg/kg did not save guinea pigs from endotoxin lethality, whereas long-term survival of mice under identical conditions was apparent. These results suggest that the relative glucocorticoid resistance observed in guinea pigs is also apparent in a lethal endotoxin shock model in which dexamethasone does not modulate TNF levels or result in increased survival as occurs in mice. The lack of clear efficacy for steroid therapy in human clinical septic shock trials would suggest that the guinea pig endotoxin model may be a more predictive system than the mouse model for the identification of novel agents useful in the treatment of endotoxin shock.

Full text

PDF
3009

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balis J. U., Paterson J. F., Shelley S. A., Larson C. H., Fareed J., Gerber L. I. Glucocorticoid and antibiotic effects on hepatic microcirculation and associated host responses in lethal gram-negative bacteremia. Lab Invest. 1979 Jan;40(1):55–65. [PubMed] [Google Scholar]
  2. Bertini R., Bianchi M., Ghezzi P. Adrenalectomy sensitizes mice to the lethal effects of interleukin 1 and tumor necrosis factor. J Exp Med. 1988 May 1;167(5):1708–1712. doi: 10.1084/jem.167.5.1708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beutler B., Milsark I. W., Cerami A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985 Aug 30;229(4716):869–871. doi: 10.1126/science.3895437. [DOI] [PubMed] [Google Scholar]
  4. Blackwood L. L., Pennington J. E. Dose-dependent effect of glucocorticosteroids on pulmonary defenses in a steroid-resistant host. Am Rev Respir Dis. 1982 Dec;126(6):1045–1049. doi: 10.1164/arrd.1982.126.6.1045. [DOI] [PubMed] [Google Scholar]
  5. Bone R. C., Fisher C. J., Jr, Clemmer T. P., Slotman G. J., Metz C. A., Balk R. A. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med. 1987 Sep 10;317(11):653–658. doi: 10.1056/NEJM198709103171101. [DOI] [PubMed] [Google Scholar]
  6. Claman H. N. Corticosteroids and lymphoid cells. N Engl J Med. 1972 Aug 24;287(8):388–397. doi: 10.1056/NEJM197208242870806. [DOI] [PubMed] [Google Scholar]
  7. Domby W. R., Whitcomb M. E. The effects of corticosteroid administration on the bronchoalveolar cells obtained from guinea pigs by lung lavage. Am Rev Respir Dis. 1978 May;117(5):893–896. doi: 10.1164/arrd.1978.117.5.893. [DOI] [PubMed] [Google Scholar]
  8. GELLER P., MERRILL E. R., JAWETZ E. Effects of cortisone and antibiotics on lethal action of endotoxins in mice. Proc Soc Exp Biol Med. 1954 Aug-Sep;86(4):716–719. doi: 10.3181/00379727-86-21211. [DOI] [PubMed] [Google Scholar]
  9. GERMUTH F. G., Jr The role of adrenocortical steroids in infection, immunity and hypersensitivity. Pharmacol Rev. 1956 Mar;8(1):1–24. [PubMed] [Google Scholar]
  10. Greisman S. E., DuBuy J. B., Woodward C. L. Experimental gram-negative bacterial sepsis: prevention of mortality not preventable by antibiotics alone. Infect Immun. 1979 Aug;25(2):538–557. doi: 10.1128/iai.25.2.538-557.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hinshaw L. B., Archer L. T., Beller-Todd B. K., Coalson J. J., Flournoy D. J., Passey R., Benjamin B., White G. L. Survival of primates in LD100 septic shock following steroid/antibiotic therapy. J Surg Res. 1980 Feb;28(2):151–170. doi: 10.1016/0022-4804(80)90158-4. [DOI] [PubMed] [Google Scholar]
  12. Hinshaw L. B., Beller-Todd B. K., Archer L. T. Current management of the septic shock patient: experimental basis for treatment. Circ Shock. 1982;9(5):543–553. [PubMed] [Google Scholar]
  13. Hinshaw L. B., Beller B. K., Chang A. C., Passey R. B., Lahti R. A., Flournoy D. J., Lane M. M., Archer L. T. Effects of prior administration of steroids upon recovery from lethal sepsis. Surg Gynecol Obstet. 1986 Oct;163(4):335–344. [PubMed] [Google Scholar]
  14. Mathison J. C., Wolfson E., Ulevitch R. J. Participation of tumor necrosis factor in the mediation of gram negative bacterial lipopolysaccharide-induced injury in rabbits. J Clin Invest. 1988 Jun;81(6):1925–1937. doi: 10.1172/JCI113540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Okusawa S., Gelfand J. A., Ikejima T., Connolly R. J., Dinarello C. A. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest. 1988 Apr;81(4):1162–1172. doi: 10.1172/JCI113431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Parker J. L., Adams H. R. Development of myocardial dysfunction in endotoxin shock. Am J Physiol. 1985 Jun;248(6 Pt 2):H818–H826. doi: 10.1152/ajpheart.1985.248.6.H818. [DOI] [PubMed] [Google Scholar]
  17. Pennington J. E., Harris E. A. Influence of immunosuppression on alveolar macrophage chemotactic activities in guinea pigs. Am Rev Respir Dis. 1981 Mar;123(3):299–304. doi: 10.1164/arrd.1981.123.3.299. [DOI] [PubMed] [Google Scholar]
  18. Pennington J. E., Matthews W. J., Jr, Marino J. T., Jr, Colten H. R. Cyclophosphamide and cortisone acetate inhibit complement biosynthesis by guinea pig bronchoalveolar macrophages. J Immunol. 1979 Sep;123(3):1318–1321. [PubMed] [Google Scholar]
  19. Remick D. G., Kunkel R. G., Larrick J. W., Kunkel S. L. Acute in vivo effects of human recombinant tumor necrosis factor. Lab Invest. 1987 Jun;56(6):583–590. [PubMed] [Google Scholar]
  20. Sayeed M. M. Pulmonary cellular dysfunction in endotoxin shock: metabolic and transport derangements. Circ Shock. 1982;9(3):335–355. [PubMed] [Google Scholar]
  21. Tracey K. J., Beutler B., Lowry S. F., Merryweather J., Wolpe S., Milsark I. W., Hariri R. J., Fahey T. J., 3rd, Zentella A., Albert J. D. Shock and tissue injury induced by recombinant human cachectin. Science. 1986 Oct 24;234(4775):470–474. doi: 10.1126/science.3764421. [DOI] [PubMed] [Google Scholar]
  22. Tracey K. J., Fong Y., Hesse D. G., Manogue K. R., Lee A. T., Kuo G. C., Lowry S. F., Cerami A. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987 Dec 17;330(6149):662–664. doi: 10.1038/330662a0. [DOI] [PubMed] [Google Scholar]
  23. Tracey K. J., Lowry S. F., Cerami A. Cachectin: a hormone that triggers acute shock and chronic cachexia. J Infect Dis. 1988 Mar;157(3):413–420. doi: 10.1093/infdis/157.3.413. [DOI] [PubMed] [Google Scholar]
  24. Veterans Administration Systemic Sepsis Cooperative Study Group Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. N Engl J Med. 1987 Sep 10;317(11):659–665. doi: 10.1056/NEJM198709103171102. [DOI] [PubMed] [Google Scholar]
  25. Wahl L. M., Winter C. C. Regulation of guinea pig macrophage collagenase production by dexamethasone and colchicine. Arch Biochem Biophys. 1984 May 1;230(2):661–667. doi: 10.1016/0003-9861(84)90447-8. [DOI] [PubMed] [Google Scholar]
  26. Wahl S. M., Wahl L. M. Regulation of macrophage collagenase, prostaglandin, and fibroblast-activating-factor production by anti-inflammatory agents: different regulatory mechanisms for tissue injury and repair. Cell Immunol. 1985 May;92(2):302–312. doi: 10.1016/0008-8749(85)90011-5. [DOI] [PubMed] [Google Scholar]
  27. Werb Z. Biochemical actions of glucocorticoids on macrophages in culture. Specific inhibition of elastase, collagenase, and plasminogen activator secretion and effects on other metabolic functions. J Exp Med. 1978 Jun 1;147(6):1695–1712. doi: 10.1084/jem.147.6.1695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wolfe R. R., Burke J. F. Glucose and lactate metabolism in experimental septic shock. Am J Physiol. 1978 Nov;235(5):R219–R227. doi: 10.1152/ajpregu.1978.235.5.R219. [DOI] [PubMed] [Google Scholar]
  29. Wolfe R. R., Miller H. I. Cardiovascular and metabolic responses during burn shock in the guinea pig. Am J Physiol. 1976 Sep;231(3):892–897. doi: 10.1152/ajplegacy.1976.231.3.892. [DOI] [PubMed] [Google Scholar]
  30. Zuckerman S. H., Shellhaas J., Butler L. D. Differential regulation of lipopolysaccharide-induced interleukin 1 and tumor necrosis factor synthesis: effects of endogenous and exogenous glucocorticoids and the role of the pituitary-adrenal axis. Eur J Immunol. 1989 Feb;19(2):301–305. doi: 10.1002/eji.1830190213. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES