Abstract
The effects of exogenously administered human recombinant IL-2 (hrIL-2) on resistance to Listeria monocytogenes infection were examined. Intravenous injection of hrIL-2 significantly enhanced antibacterial resistance in both BDF1 and C3H/HeJ mice. The beneficial effect of hrIL-2 was observed with as little as 0.6 micrograms per mouse, whereas optimum protection occurred at 6 micrograms per mouse, hrIL-2 was equally protective when administered concomitant with the listeriae or up to 24 h prior to infection; it had little effect if given after the bacterial challenge. Kinetic experiments indicated that both the peak bacterial burden and the time lag before L. monocytogenes began to be cleared from the spleen and liver were reduced in hrIL-2-treated mice as compared with control mice. Histopathological examination of spleens and livers confirmed that hrIL-2-treated Listeria-infected mice experienced considerably less damage to these organs than did control mice. Spleen cells from Listeria-infected mice exhibited depressed levels of mitogen-induced proliferation coincident with the peak bacterial burden in the spleen and liver and during the subsequent recovery from the infection. Administration of hrIL-2 to uninfected mice had no effect on spleen cell proliferation in response to mitogens in vitro, nor did hrIL-2 treatment restore normal levels of splenocyte proliferative responses to Listeria-infected mice. In addition, hrIL-2 treatment resulted in attenuated levels of serum colony-stimulating activity in infected mice as compared with control infected mice. Coadministration of both hrIL-2 and human recombinant interleukin-1 alpha at various dose and time combinations had no detectable additive or synergistic effect. Although these data do not suggest an obvious mechanism of action, they clearly demonstrate that hrIL-2 can augment host defense against the facultative intracellular pathogen L. monocytogenes.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson T. D., Hayes T. J., Gately M. K., Bontempo J. M., Stern L. L., Truitt G. A. Toxicity of human recombinant interleukin-2 in the mouse is mediated by interleukin-activated lymphocytes. Separation of efficacy and toxicity by selective lymphocyte subset depletion. Lab Invest. 1988 Nov;59(5):598–612. [PubMed] [Google Scholar]
- Chong K. T. Prophylactic administration of interleukin-2 protects mice from lethal challenge with gram-negative bacteria. Infect Immun. 1987 Mar;55(3):668–673. doi: 10.1128/iai.55.3.668-673.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czuprynski C. J., Brown J. F. Dual regulation of anti-bacterial resistance and inflammatory neutrophil and macrophage accumulation by L3T4+ and Lyt 2+ Listeria-immune T cells. Immunology. 1987 Feb;60(2):287–293. [PMC free article] [PubMed] [Google Scholar]
- Czuprynski C. J., Brown J. F., Young K. M., Cooley A. J. Administration of purified anti-L3T4 monoclonal antibody impairs the resistance of mice to Listeria monocytogenes infection. Infect Immun. 1989 Jan;57(1):100–109. doi: 10.1128/iai.57.1.100-109.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czuprynski C. J., Brown J. F., Young K. M., Cooley A. J., Kurtz R. S. Effects of murine recombinant interleukin 1 alpha on the host response to bacterial infection. J Immunol. 1988 Feb 1;140(3):962–968. [PubMed] [Google Scholar]
- De Libero G., Kaufmann S. H. Antigen-specific Lyt-2+ cytolytic T lymphocytes from mice infected with the intracellular bacterium Listeria monocytogenes. J Immunol. 1986 Oct 15;137(8):2688–2694. [PubMed] [Google Scholar]
- Donohue J. H., Rosenberg S. A. The fate of interleukin-2 after in vivo administration. J Immunol. 1983 May;130(5):2203–2208. [PubMed] [Google Scholar]
- Farr A. G., Kiely J. M., Unanue E. R. Macrophage-T cell interactions involving Listeria monocytogenes--role of the H-2 gene complex. J Immunol. 1979 Jun;122(6):2395–2404. [PubMed] [Google Scholar]
- Farrar W. L., Johnson H. M., Farrar J. J. Regulation of the production of immune interferon and cytotoxic T lymphocytes by interleukin 2. J Immunol. 1981 Mar;126(3):1120–1125. [PubMed] [Google Scholar]
- Gately M. K., Anderson T. D., Hayes T. J. Role of asialo-GM1-positive lymphoid cells in mediating the toxic effects of recombinant IL-2 in mice. J Immunol. 1988 Jul 1;141(1):189–200. [PubMed] [Google Scholar]
- Hahn H., Kaufmann S. H. The role of cell-mediated immunity in bacterial infections. Rev Infect Dis. 1981 Nov-Dec;3(6):1221–1250. doi: 10.1093/clinids/3.6.1221. [DOI] [PubMed] [Google Scholar]
- Hefeneider S. H., Conlon P. J., Henney C. S., Gillis S. In vivo interleukin 2 administration augments the generation of alloreactive cytolytic T lymphocytes and resident natural killer cells. J Immunol. 1983 Jan;130(1):222–227. [PubMed] [Google Scholar]
- Holter W., Grunow R., Stockinger H., Knapp W. Recombinant interferon-gamma induces interleukin 2 receptors on human peripheral blood monocytes. J Immunol. 1986 Mar 15;136(6):2171–2175. [PubMed] [Google Scholar]
- Iizawa Y., Nishi T., Kondo M., Tsuchiya K., Imada A. Effect of recombinant human interleukin-2 on the course of experimental chronic respiratory tract infection caused by Klebsiella pneumoniae in mice. Infect Immun. 1988 Jan;56(1):45–50. doi: 10.1128/iai.56.1.45-50.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeevan A., Asherson G. L. Recombinant interleukin-2 limits the replication of Mycobacterium lepraemurium and Mycobacterium bovis BCG in mice. Infect Immun. 1988 Mar;56(3):660–664. doi: 10.1128/iai.56.3.660-664.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufmann S. H., Hahn H., Berger R., Kirchner H. Interferon-gamma production by Listeria monocytogenes-specific T cells active in cellular antibacterial immunity. Eur J Immunol. 1983 Mar;13(3):265–268. doi: 10.1002/eji.1830130318. [DOI] [PubMed] [Google Scholar]
- Kaufmann S. H., Hahn H. Biological functions of t cell lines with specificity for the intracellular bacterium Listeria monocytogenes in vitro and in vivo. J Exp Med. 1982 Jun 1;155(6):1754–1765. doi: 10.1084/jem.155.6.1754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufmann S. H., Hug E., De Libero G. Listeria monocytogenes-reactive T lymphocyte clones with cytolytic activity against infected target cells. J Exp Med. 1986 Jul 1;164(1):363–368. doi: 10.1084/jem.164.1.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufmann S. H., Hug E., Väth U., Müller I. Effective protection against Listeria monocytogenes and delayed-type hypersensitivity to listerial antigens depend on cooperation between specific L3T4+ and Lyt 2+ T cells. Infect Immun. 1985 Apr;48(1):263–266. doi: 10.1128/iai.48.1.263-266.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufmann S. H., Rodewald H. R., Hug E., De Libero G. Cloned Listeria monocytogenes specific non-MHC-restricted Lyt-2+ T cells with cytolytic and protective activity. J Immunol. 1988 May 1;140(9):3173–3179. [PubMed] [Google Scholar]
- Malkovský M., Loveland B., North M., Asherson G. L., Gao L., Ward P., Fiers W. Recombinant interleukin-2 directly augments the cytotoxicity of human monocytes. Nature. 1987 Jan 15;325(6101):262–265. doi: 10.1038/325262a0. [DOI] [PubMed] [Google Scholar]
- Mielke M. E., Ehlers S., Hahn H. T-cell subsets in delayed-type hypersensitivity, protection, and granuloma formation in primary and secondary Listeria infection in mice: superior role of Lyt-2+ cells in acquired immunity. Infect Immun. 1988 Aug;56(8):1920–1925. doi: 10.1128/iai.56.8.1920-1925.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Resnick M., Roguel N., Bercovier H., Enk C., Frankenburg S., Kedar E. Lysis of murine macrophages infected with intracellular pathogens by interleukin 2-activated killer (LAK) cells in vitro. Cell Immunol. 1988 Apr 15;113(1):214–219. doi: 10.1016/0008-8749(88)90019-6. [DOI] [PubMed] [Google Scholar]
- Sharma S. D., Hofflin J. M., Remington J. S. In vivo recombinant interleukin 2 administration enhances survival against a lethal challenge with Toxoplasma gondii. J Immunol. 1985 Dec;135(6):4160–4163. [PubMed] [Google Scholar]
- Weil-Hillman G., Hank J. A., Rosenthal N. S., Sondel P. M. Transient decrease in IL-2-responsive lymphocytes 24 hours after initiation of continuous IL-2 infusion in cancer patients. J Biol Response Mod. 1988 Oct;7(5):424–437. [PubMed] [Google Scholar]
- Weyand C. M., Goronzy J., Dallman M. J., Fathman C. G. Administration of recombinant interleukin 2 in vivo induces a polyclonal IgM response. J Exp Med. 1986 Jun 1;163(6):1607–1612. doi: 10.1084/jem.163.6.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weyand C., Goronzy J., Fathman C. G., O'Hanley P. Administration in vivo of recombinant interleukin 2 protects mice against septic death. J Clin Invest. 1987 Jun;79(6):1756–1763. doi: 10.1172/JCI113016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wing E. J., Barczynski L. C., Waheed A., Shadduck R. K. Effect of Listeria monocytogenes infection on serum levels of colony-stimulating factor and number of progenitor cells in immune and nonimmune mice. Infect Immun. 1985 Aug;49(2):325–328. doi: 10.1128/iai.49.2.325-328.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi S., Onji M., Kondoh H., Miyaoka H., Ohta Y. Immunologic effects on peripheral lymphoid cells from patients with chronic hepatitis type B during administration of recombinant interleukin 2. Clin Exp Immunol. 1988 Oct;74(1):1–6. [PMC free article] [PubMed] [Google Scholar]
- Young A. M., Cheers C. Colony-forming cells and colony-stimulating activity during listeriosis in genetically resistant or susceptible mice. Cell Immunol. 1986 Feb;97(2):227–237. doi: 10.1016/0008-8749(86)90393-x. [DOI] [PubMed] [Google Scholar]
- Zinkernagel R. M., Althage A., Adler B., Blanden R. V., Davidson W. F., Kees U., Dunlop M. B., Shreffler D. C. H-2 restriction of cell-mediated immunity to an intracellular bacterium: effector T cells are specific for Listeria antigen in association with H-21 region-coded self-markers. J Exp Med. 1977 May 1;145(5):1353–1367. doi: 10.1084/jem.145.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]