Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1986 Aug;53(2):393–397. doi: 10.1128/iai.53.2.393-397.1986

Levels of antibodies to Plasmodium falciparum sporozoite surface antigens reflect malaria transmission rates and are persistent in the absence of reinfection.

P Druilhe, O Pradier, J P Marc, F Miltgen, D Mazier, G Parent
PMCID: PMC260888  PMID: 3525412

Abstract

Antibodies reacting with Plasmodium falciparum sporozoite surface antigens were measured by an immunofluorescence assay using wet preparations of sporozoites attached to poly-L-lysine-treated glass slides, a procedure which was found to be more specific than one using glutaraldehyde-treated and dried preparations. Subjects recovering from a first attack were found to be negative. In two African villages which differed in the level at which mosquitoes transmit the disease (1 and 100 infective bites per year and per individual), both the prevalence by age group and the levels of anti-sporozoite antibodies differed markedly, as follows. In the low-transmission area, these antibodies were not detected in subjects aged 2 to 10 years; thereafter, prevalence increased gradually with the age of the subject and reached 90% in subjects aged 50 to 80 years. In the high-transmission area, all of the subjects studied, including the younger ones, were positive. Anti-sporozoite antibody levels were independent of the levels of antibodies directed against blood stages. On average, the mean antibody titers were equal to 1/16 in the first village and 1/1,650 in the second one. These results suggest that stage-specific antibodies reflect the cumulative number of sporozoites inoculated in humans by mosquitoes and may therefore have useful epidemiological applications. In addition, the presence of stage-specific antibodies in the sera of African adults collected at different times after departure from the endemic area indicates that they may last for several years. During the course of this study, we observed a heterogeneity of immunofluorescence labeling in parasite populations prepared from mosquito salivary glands. This raises the question of possible qualitative or quantitative antigenic differences or both between one sporozoite and the other.

Full text

PDF
393

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballou W. R., Rothbard J., Wirtz R. A., Gordon D. M., Williams J. S., Gore R. W., Schneider I., Hollingdale M. R., Beaudoin R. L., Maloy W. L. Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science. 1985 May 24;228(4702):996–999. doi: 10.1126/science.2988126. [DOI] [PubMed] [Google Scholar]
  2. Burkot T. R., Zavala F., Gwadz R. W., Collins F. H., Nussenzweig R. S., Roberts D. R. Identification of malaria-infected mosquitoes by a two-site enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1984 Mar;33(2):227–231. doi: 10.4269/ajtmh.1984.33.227. [DOI] [PubMed] [Google Scholar]
  3. Dame J. B., Williams J. L., McCutchan T. F., Weber J. L., Wirtz R. A., Hockmeyer W. T., Maloy W. L., Haynes J. D., Schneider I., Roberts D. Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science. 1984 Aug 10;225(4662):593–599. doi: 10.1126/science.6204383. [DOI] [PubMed] [Google Scholar]
  4. Danforth H. D., Aikawa M., Cochrane A. H., Nussenzweig R. S. Sporozoites of mammalian malaria: attachment to, interiorization and fate within macrophages. J Protozool. 1980 May;27(2):193–202. doi: 10.1111/j.1550-7408.1980.tb04680.x. [DOI] [PubMed] [Google Scholar]
  5. Druilhe P., Puebla R. M., Miltgen F., Perrin L., Gentilini M. Species- and stage-specific antigens in exoerythrocytic stages of Plasmodium falciparum. Am J Trop Med Hyg. 1984 May;33(3):336–341. doi: 10.4269/ajtmh.1984.33.336. [DOI] [PubMed] [Google Scholar]
  6. Enea V., Ellis J., Zavala F., Arnot D. E., Asavanich A., Masuda A., Quakyi I., Nussenzweig R. S. DNA cloning of Plasmodium falciparum circumsporozoite gene: amino acid sequence of repetitive epitope. Science. 1984 Aug 10;225(4662):628–630. doi: 10.1126/science.6204384. [DOI] [PubMed] [Google Scholar]
  7. Mazier D., Mellouk S., Beaudoin R. L., Texier B., Druilhe P., Hockmeyer W., Trosper J., Paul C., Charoenvit Y., Young J. Effect of antibodies to recombinant and synthetic peptides on P. falciparum sporozoites in vitro. Science. 1986 Jan 10;231(4734):156–159. doi: 10.1126/science.3510455. [DOI] [PubMed] [Google Scholar]
  8. Nardin E. H., Nussenzweig R. S., McGregor I. A., Bryan J. H. Antibodies to sporozoites: their frequent occurrence in individuals living in an area of hyperendemic malaria. Science. 1979 Nov 2;206(4418):597–599. doi: 10.1126/science.386511. [DOI] [PubMed] [Google Scholar]
  9. Rijkers G. T., Mosier D. E. Pneumococcal polysaccharides induce antibody formation by human B lymphocytes in vitro. J Immunol. 1985 Jul;135(1):1–4. [PubMed] [Google Scholar]
  10. Zavala F., Gwadz R. W., Collins F. H., Nussenzweig R. S., Nussenzweig V. Monoclonal antibodies to circumsporozoite proteins identify the species of malaria parasite in infected mosquitoes. Nature. 1982 Oct 21;299(5885):737–738. doi: 10.1038/299737a0. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES