Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1986 Jun;52(3):650–656. doi: 10.1128/iai.52.3.650-656.1986

Sensitization with Fusobacterium nucleatum targets antibody-dependent cellular cytotoxicity to mammalian cells.

D E Lopatin, E Blackburn
PMCID: PMC260906  PMID: 3710577

Abstract

Incubation of mammalian tumor cells with either soluble of insoluble fractions (10 to 100 micrograms/ml) of Fusobacterium nucleatum sensitizes them to the destructive activity of antibody-dependent cellular cytotoxicity (ADCC) effector cells in the presence of anti-F. nucleatum antisera. All three types of ADCC effector cells are capable of destroying F. nucleatum-sensitized target cells with varying degrees of effectiveness (lymphocytes much greater than monocytes greater than neutrophils). Hyperimmune rabbit anti-F. nucleatum antisera were active at a dilution as high as 1/100,000. Our studies indicated that F. nucleatum must be bound to the target cells since if either the effector cells are treated with F. nucleatum or F. nucleatum is directly to an ADCC reaction, there is no significant effect on cytotoxicity. The kinetics of F. nucleatum-targeted ADCC are identical to those of classical ADCC, suggesting a similar mechanism. The specificity of F. nucleatum-targeted ADCC was demonstrated by cold target inhibition studies and by showing that other antibacterial antisera were incapable of mediating the activity.

Full text

PDF
650

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DeBoer K. P., Kleinman R., Teodorescu M. Identification and separation by bacterial adherence of human lymphocytes that suppress natural cytotoxicity. J Immunol. 1981 Jan;126(1):276–281. [PubMed] [Google Scholar]
  2. Falkler W. A., Jr, Smoot C. N., Mongiello J. R. Attachment of cell fragments of Fusobacterium nucleatum to oral epithelial cells, gingival fibroblasts and white blood cells. Arch Oral Biol. 1982;27(7):553–559. doi: 10.1016/0003-9969(82)90069-3. [DOI] [PubMed] [Google Scholar]
  3. Freundlich B., Avdalovic N. Use of gelatin/plasma coated flasks for isolating human peripheral blood monocytes. J Immunol Methods. 1983 Aug 12;62(1):31–37. doi: 10.1016/0022-1759(83)90107-2. [DOI] [PubMed] [Google Scholar]
  4. Levy P. C., Shaw G. M., LoBuglio A. F. Human monocyte, lymphocyte, and granulocyte antibody-dependent cell-mediated cytotoxicity toward tumor cells. I. General characteristics of cytolysis. J Immunol. 1979 Aug;123(2):594–599. [PubMed] [Google Scholar]
  5. Lopatin D. E., Kessler R. E. Pretreatment with lipoteichoic acid sensitizes target cells to antibody-dependent cellular cytotoxicity in the presence of anti-lipoteichoic acid antibodies. Infect Immun. 1985 Jun;48(3):638–643. doi: 10.1128/iai.48.3.638-643.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lopatin D. E., Smith F. N., Syed S. A., Morrison E. C. The effect of periodontal therapy on lymphocyte blastogenesis to plaque associated microorganisms. J Periodontal Res. 1983 Jan;18(1):93–102. doi: 10.1111/j.1600-0765.1983.tb00340.x. [DOI] [PubMed] [Google Scholar]
  7. MOELLER E. CONTACT-INDUCED CYTOTOXICITY BY LYMPHOID CELLS CONTAINING FOREIGN ISOANTIGENS. Science. 1965 Feb 19;147(3660):873–879. doi: 10.1126/science.147.3660.873. [DOI] [PubMed] [Google Scholar]
  8. Mueller J., Brun del Re G., Buerki H., Keller H. U., Hess M. W., Cottier H. Nonspecific acid esterase activity: a criterion for differentiation of T and B lymphocytes in mouse lymph nodes. Eur J Immunol. 1975 Apr;5(4):270–274. doi: 10.1002/eji.1830050411. [DOI] [PubMed] [Google Scholar]
  9. Perlmann P., Perlmann H. Contactual lysis of antibody-coated chicken erythrocytes by purified lymphocytes. Cell Immunol. 1970 Sep;1(3):300–315. doi: 10.1016/0008-8749(70)90051-1. [DOI] [PubMed] [Google Scholar]
  10. Perlmann P., Perlmann H., Wigzell H. Lymphocyte mediated cytotoxicity in vitro. Induction and inhibition by humoral antibody and nature of effector cells. Transplant Rev. 1972;13:91–114. doi: 10.1111/j.1600-065x.1972.tb00061.x. [DOI] [PubMed] [Google Scholar]
  11. Slots J. Subgingival microflora and periodontal disease. J Clin Periodontol. 1979 Oct;6(5):351–382. doi: 10.1111/j.1600-051x.1979.tb01935.x. [DOI] [PubMed] [Google Scholar]
  12. Slots J. The predominant cultivable microflora of advanced periodontitis. Scand J Dent Res. 1977 Jan-Feb;85(2):114–121. doi: 10.1111/j.1600-0722.1977.tb00541.x. [DOI] [PubMed] [Google Scholar]
  13. Sonis S. T., Mirando D., Stelos P., Lamster I. B. Capacity of human oral leucocytes to mediate antibody-dependent cell-mediated cytotoxicity. Arch Oral Biol. 1979;24(3):235–237. doi: 10.1016/0003-9969(79)90147-x. [DOI] [PubMed] [Google Scholar]
  14. Spiegelberg H. L., Perlmann H., Perlmann P. Interaction of K lymphocytes with myeloma proteins of different IgG subclasses. J Immunol. 1976 Nov;117(5 Pt 1):1464–1471. [PubMed] [Google Scholar]
  15. Tanner A. C., Haffer C., Bratthall G. T., Visconti R. A., Socransky S. S. A study of the bacteria associated with advancing periodontitis in man. J Clin Periodontol. 1979 Oct;6(5):278–307. doi: 10.1111/j.1600-051x.1979.tb01931.x. [DOI] [PubMed] [Google Scholar]
  16. Vercellotti G. M., Lussenhop D., Peterson P. K., Furcht L. T., McCarthy J. B., Jacob H. S., Moldow C. F. Bacterial adherence to fibronectin and endothelial cells: a possible mechanism for bacterial tissue tropism. J Lab Clin Med. 1984 Jan;103(1):34–43. [PubMed] [Google Scholar]
  17. Williams B. L., Pantalone R. M., Sherris J. C. Subgingival microflora and periodontitis. J Periodontal Res. 1976 Feb;11(1):1–18. doi: 10.1111/j.1600-0765.1976.tb00045.x. [DOI] [PubMed] [Google Scholar]
  18. van Houte J. Bacterial adherence in the mouth. Rev Infect Dis. 1983 Sep-Oct;5 (Suppl 4):S659–S669. doi: 10.1093/clinids/5.supplement_4.s659. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES