Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1986 Mar;51(3):744–749. doi: 10.1128/iai.51.3.744-749.1986

Effect of macrophage activation on phagocyte-Plasmodium interaction.

K M Brown, J P Kreier
PMCID: PMC260960  PMID: 3512432

Abstract

We investigated the effect of both immune and normal sera on the binding of free Plasmodium berghei by resident and activated macrophages. Resident macrophages bound plasmodia to a greater extent than did activated macrophages, regardless of treatment. Resident macrophages bound free plasmodia, predominantly trophozoites, in the presence of normal serum by a mechanism inhibited by N-acetylglucosamine and N-acetylmannosamine. Macrophages activated through treatment with Propionibacterium acnes ("Corynebacterium parvum"), on the other hand, did not bind free plasmodia in the presence of normal serum through systems inhibited by N-acetylmannosamine or N-acetylglucosamine. The binding of free plasmodia by activated macrophages was greatest in the presence of immune serum and could be inhibited by immune complexes but not by N-acetylmannosamine or N-acetylglucosamine. These results suggest that a receptor for a carbohydrate component of a normal serum opsonin mediates initial adherence of plasmodial antigen onto resident macrophages, triggering both the immunological cascade and macrophage activation. After activation, the macrophages no longer have the carbohydrate-specific receptor but do have functional Fc receptors which mediate the adherence of immune-serum-opsonized plasmodia.

Full text

PDF
744

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison A. C. Cellular immunity to malaria and babesia parasites: a personal viewpoint. Contemp Top Immunobiol. 1984;12:463–490. doi: 10.1007/978-1-4684-4571-8_12. [DOI] [PubMed] [Google Scholar]
  2. Brooks C., Kreier J. P. Role of the surface coat in in vitro attachment and phagocytosis of Plasmodium berghei by peritoneal macrophages. Infect Immun. 1978 Jun;20(3):827–835. doi: 10.1128/iai.20.3.827-835.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown K. M., Kreier J. P. Plasmodium berghei malaria: blockage by immune complexes of macrophage receptors for opsonized plasmodia. Infect Immun. 1982 Sep;37(3):1227–1233. doi: 10.1128/iai.37.3.1227-1233.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Celada A., Cruchaud A., Perrin L. H. Opsonic activity of human immune serum on in vitro phagocytosis of Plasmodium falciparum infected red blood cells by monocytes. Clin Exp Immunol. 1982 Mar;47(3):635–644. [PMC free article] [PubMed] [Google Scholar]
  5. Chang K. P. Leishmania donovani-macrophage binding mediated by surface glycoproteins/antigens: characterization in vitro by a radioisotopic assay. Mol Biochem Parasitol. 1981 Nov;4(1-2):67–76. doi: 10.1016/0166-6851(81)90030-x. [DOI] [PubMed] [Google Scholar]
  6. Chow J. S., Kreier J. P. Plasmodium berghei: adherence and phagocytosis by rat macrophages in vitro. Exp Parasitol. 1972 Feb;31(1):13–18. doi: 10.1016/0014-4894(72)90042-2. [DOI] [PubMed] [Google Scholar]
  7. Clark I. A., Allison A. C., Cox F. E. Protection of mice against Babesia and Plasmodium with BCG. Nature. 1976 Jan 29;259(5541):309–311. doi: 10.1038/259309a0. [DOI] [PubMed] [Google Scholar]
  8. Clark I. A., Cox F. E., Allison A. C. Protection of mice against Babesia spp. and Plasmodium spp. with killed Corynebacterium parvum. Parasitology. 1977 Feb;74(1):9–18. doi: 10.1017/s003118200004748x. [DOI] [PubMed] [Google Scholar]
  9. Clark I. A., Virelizier J. L., Carswell E. A., Wood P. R. Possible importance of macrophage-derived mediators in acute malaria. Infect Immun. 1981 Jun;32(3):1058–1066. doi: 10.1128/iai.32.3.1058-1066.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cottrell B. J., Playfair J. H., de Sousa B. Plasmodium yoelii and Plasmodium vinckei: the effects of nonspecific immunostimulation on murine malaria. Exp Parasitol. 1977 Oct;43(1):45–53. doi: 10.1016/0014-4894(77)90006-6. [DOI] [PubMed] [Google Scholar]
  11. Diffley P., Honigberg B. M. Immunologic analysis of host plasma proteins on bloodstream forms of African pathogenic trypanosomes. II. Identification and quantitation of surface-bound albumin, nonspecific IgG, and complement on Trypanosoma congolense. J Parasitol. 1978 Aug;64(4):674–681. [PubMed] [Google Scholar]
  12. Dwyer D. M. Immunologic and fine structure evidence of avidly bound host serum proteins in the surface coat of a bloodstream trypanosome. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1222–1226. doi: 10.1073/pnas.73.4.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ezekowitz R. A., Austyn J., Stahl P. D., Gordon S. Surface properties of bacillus Calmette-Guérin-activated mouse macrophages. Reduced expression of mannose-specific endocytosis, Fc receptors, and antigen F4/80 accompanies induction of Ia. J Exp Med. 1981 Jul 1;154(1):60–76. doi: 10.1084/jem.154.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ezekowitz R. A., Gordon S. Down-regulation of mannosyl receptor-mediated endocytosis and antigen F4/80 in bacillus Calmette-Guérin-activated mouse macrophages. Role of T lymphocytes and lymphokines. J Exp Med. 1982 Jun 1;155(6):1623–1637. doi: 10.1084/jem.155.6.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Green T. J., Kreier J. P. Demonstration of the role of cytophilic antibody in resistance to malaria parasites (Plasmodium berghei) in rats. Infect Immun. 1978 Jan;19(1):138–145. doi: 10.1128/iai.19.1.138-145.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holmberg S., Schulman S., Vanderberg J. P. Role of a serum factor in enhancement of in vitro interactions between Plasmodium berghei sporozoites and hamster peritoneal macrophages. J Parasitol. 1981 Dec;67(6):893–897. [PubMed] [Google Scholar]
  17. Hunter K. W., Jr, Winkelstein J. A., Simpson T. W. Serum opsonic activity in rodent malaria: functional and immunochemical characteristics in vitro. J Immunol. 1979 Dec;123(6):2582–2587. [PubMed] [Google Scholar]
  18. Imber M. J., Pizzo S. V., Johnson W. J., Adams D. O. Selective diminution of the binding of mannose by murine macrophages in the late stages of activation. J Biol Chem. 1982 May 10;257(9):5129–5135. [PubMed] [Google Scholar]
  19. Khusmith S., Druilhe P., Gentilini M. Enhanced Plasmodium falciparum merozoite phagocytosis by monocytes from immune individuals. Infect Immun. 1982 Mar;35(3):874–879. doi: 10.1128/iai.35.3.874-879.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Loose L. D. Characterization of macrophage dysfunction in rodent malaria. J Leukoc Biol. 1984 Dec;36(6):703–718. doi: 10.1002/jlb.36.6.703. [DOI] [PubMed] [Google Scholar]
  21. Murphy J. R. Host defenses in murine malaria: nonspecific resistance to Plasmodium berghei generated in response to Mycobacterium bovis infection or Corynebacterium parvum stimulation. Infect Immun. 1981 Jul;33(1):199–211. doi: 10.1128/iai.33.1.199-211.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nabarra B., Cavelier J. F., Dry M., Dimitriu A. Scanning electron microscopic studies of activated macrophages in the mouse. J Reticuloendothel Soc. 1978 Nov;24(5):489–498. [PubMed] [Google Scholar]
  23. Nussenzweig R. S. Increased nonspecific resstance to malaria produced by administration of killed Corynebacterium parvum. Exp Parasitol. 1967 Oct;21(2):224–231. doi: 10.1016/0014-4894(67)90084-7. [DOI] [PubMed] [Google Scholar]
  24. Ockenhouse C. F., Shear H. L. Oxidative killing of the intraerythrocytic malaria parasite Plasmodium yoelii by activated macrophages. J Immunol. 1984 Jan;132(1):424–431. [PubMed] [Google Scholar]
  25. Oda L. M., Kubelka C. F., Alviano C. S., Travassos L. R. Ingestion of yeast forms of Sporothrix schenckii by mouse peritoneal macrophages. Infect Immun. 1983 Feb;39(2):497–504. doi: 10.1128/iai.39.2.497-504.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Prior R. B., Kreier J. P. Plasmodium berghei freed from host erythrocytes by a continuous-flow ultrasonic system. Exp Parasitol. 1972 Oct;32(2):239–243. doi: 10.1016/0014-4894(72)90030-6. [DOI] [PubMed] [Google Scholar]
  27. Raz A., Shahar A., Goldman R. Characterization of an in vivo induced peritoneal macrophage population following intraperitoneal injection of concanavalin A. J Reticuloendothel Soc. 1977 Nov;22(5):445–460. [PubMed] [Google Scholar]
  28. Roubin R., Kennard J., Foley D., Zolla-Pazner S. Markers of macrophage heterogeneity: altered frequency of macrophage subpopulations after various pathologic stimuli. J Reticuloendothel Soc. 1981 Jun;29(6):423–432. [PubMed] [Google Scholar]
  29. Rzepczyk C. M., Saul A. J., Ferrante A. Polyamine oxidase-mediated intraerythrocytic killing of Plasmodium falciparum: evidence against the role of reactive oxygen metabolites. Infect Immun. 1984 Jan;43(1):238–244. doi: 10.1128/iai.43.1.238-244.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schulman S., Oppenheim J. D., Vanderberg J. P. Plasmodium berghei and Plasmodium knowlesi: serum binding to sporozoites. Exp Parasitol. 1980 Jun;49(3):420–429. doi: 10.1016/0014-4894(80)90076-4. [DOI] [PubMed] [Google Scholar]
  31. Shear H. L., Nussenzweig R. S., Bianco C. Immune phagocytosis in murine malaria. J Exp Med. 1979 Jun 1;149(6):1288–1298. doi: 10.1084/jem.149.6.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stahl P. D., Wileman T. E., Diment S., Shepherd V. L. Mannose-specific oligosaccharide recognition by mononuclear phagocytes. Biol Cell. 1984;51(2):215–218. doi: 10.1111/j.1768-322x.1984.tb00301.x. [DOI] [PubMed] [Google Scholar]
  33. Warr G. A. A macrophage receptor for (mannose/glucosamine)-glycoproteins of potential importance in phagocytic activity. Biochem Biophys Res Commun. 1980 Apr 14;93(3):737–745. doi: 10.1016/0006-291x(80)91139-0. [DOI] [PubMed] [Google Scholar]
  34. Zenian A., Kierszenbaum F. Inhibition of macrophage-Trypanosoma cruzi interaction by concanavalin A and differential binding of bloodstream and culture forms to the macrophage surface. J Parasitol. 1982 Jun;68(3):408–415. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES