Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1986 May;52(2):364–369. doi: 10.1128/iai.52.2.364-369.1986

Pathophysiology of experimental leishmaniasis: pattern of development of metastatic disease in the susceptible host.

J O Hill
PMCID: PMC261007  PMID: 3699885

Abstract

A clear understanding of the etiology of the various forms of leishmaniasis will require knowledge of how physiological properties of the parasite and host immunity influence the pattern of development of the disease. Of particular importance are how these factors affect the growth rate of Leishmania spp. at the site of inoculation in the skin, their capacity to disseminate to visceral and distant cutaneous sites, and their capacity to multiply once there. This paper details the pattern of development of disseminated Leishmania major infection in susceptible BALB/c nu/+ and BALB/c nu/nu mice. It was found that the parasite disseminates from the hind footpad to distant cutaneous sites soon after metastatic foci are established in the liver and spleen. Both mononuclear phagocytes and neutrophils may be the vehicles for the transport of the parasite in the blood. Once visceral and cutaneous metastases are established, the parasites in those foci increase in number progressively. L. major has the capacity to multiply at visceral and cutaneous sites at the same rate. Despite the presence of viable parasites in a number of skin sites, cutaneous metastatic lesions developed almost exclusively on the feet and the tail. Furthermore, these lesions appeared to develop preferentially at sites near joints, suggesting that factors other than temperature may influence the development of cutaneous metastatic lesions.

Full text

PDF
364

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barral A., Petersen E. A., Sacks D. L., Neva F. A. Late metastatic Leishmaniasis in the mouse. A model for mucocutaneous disease. Am J Trop Med Hyg. 1983 Mar;32(2):277–285. doi: 10.4269/ajtmh.1983.32.277. [DOI] [PubMed] [Google Scholar]
  2. Bjorvatn B., Neva F. A. A model in mice for experimental leishmaniasis with a West African strain of Leishmania tropica. Am J Trop Med Hyg. 1979 May;28(3):472–479. doi: 10.4269/ajtmh.1979.28.472. [DOI] [PubMed] [Google Scholar]
  3. Chang K. P. Leishmanicidal mechanisms of human polymorphonuclear phagocytes. Am J Trop Med Hyg. 1981 Mar;30(2):322–333. doi: 10.4269/ajtmh.1981.30.322. [DOI] [PubMed] [Google Scholar]
  4. Handman E., Ceredig R., Mitchell G. F. Murine cutaneous leishmaniasis: disease patterns in intact and nude mice of various genotypes and examination of some differences between normal and infected macrophages. Aust J Exp Biol Med Sci. 1979 Feb;57(1):9–29. doi: 10.1038/icb.1979.2. [DOI] [PubMed] [Google Scholar]
  5. Hill J. O., North R. J., Collins F. M. Advantages of measuring changes in the number of viable parasites in murine models of experimental cutaneous leishmaniasis. Infect Immun. 1983 Mar;39(3):1087–1094. doi: 10.1128/iai.39.3.1087-1094.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hill J. O. Quantitation of Leishmania tropica major by its ability to form distinct colonies on agar-based media. J Parasitol. 1983 Dec;69(6):1068–1071. [PubMed] [Google Scholar]
  7. Hill J. O. Resistance to cutaneous leishmaniasis: acquired ability of the host to kill parasites at the site of infection. Infect Immun. 1984 Jul;45(1):127–132. doi: 10.1128/iai.45.1.127-132.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leclerc C., Modabber F., Deriaud E., Cheddid L. Systemic infection of Leishmania tropica (major) in various strains of mice. Trans R Soc Trop Med Hyg. 1981;75(6):851–854. doi: 10.1016/0035-9203(81)90430-2. [DOI] [PubMed] [Google Scholar]
  9. Marsden P. D. Current concepts in parasitology. Leishmaniasis. N Engl J Med. 1979 Feb 15;300(7):350–352. doi: 10.1056/NEJM197902153000706. [DOI] [PubMed] [Google Scholar]
  10. Mitchell G. F., Anders R. F., Chapman C. B., Roberts-Thomson I. C., Handman E., Cruise K. M., Rickard M. D., Lightowlers M. W., Garcia E. G. Examination of strategies for vaccination against parasitic infection or disease using mouse models. Contemp Top Immunobiol. 1984;12:323–358. doi: 10.1007/978-1-4684-4571-8_9. [DOI] [PubMed] [Google Scholar]
  11. Murray H. W., Rubin B. Y., Rothermel C. D. Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon-gamma is the activating lymphokine. J Clin Invest. 1983 Oct;72(4):1506–1510. doi: 10.1172/JCI111107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nacy C. A., Meltzer M. S., Leonard E. J., Wyler D. J. Intracellular replication and lymphokine-induced destruction of Leishmania tropica in C3H/HeN mouse macrophages. J Immunol. 1981 Dec;127(6):2381–2386. [PubMed] [Google Scholar]
  13. Pearson R. D., Steigbigel R. T. Phagocytosis and killing of the protozoan Leishmania donovani by human polymorphonuclear leukocytes. J Immunol. 1981 Oct;127(4):1438–1443. [PubMed] [Google Scholar]
  14. Pearson R. D., Wheeler D. A., Harrison L. H., Kay H. D. The immunobiology of leishmaniasis. Rev Infect Dis. 1983 Sep-Oct;5(5):907–927. doi: 10.1093/clinids/5.5.907. [DOI] [PubMed] [Google Scholar]
  15. Poulter L. W. Mechanisms of immunity to leishmaniasis. II. Significance of the intramacrophage localization of the parasite. Clin Exp Immunol. 1980 Apr;40(1):25–35. [PMC free article] [PubMed] [Google Scholar]
  16. Pérez H., Labrador F., Torrealba J. W. Variations in the response of five strains of mice to Leishmania mexicana. Int J Parasitol. 1979 Feb;9(1):27–32. doi: 10.1016/0020-7519(79)90062-6. [DOI] [PubMed] [Google Scholar]
  17. ROHRS L. C. LEISHMANIASIS IN THE SUDAN REPUBLIC. XVIII. PARASITEMIA IN KALA-AZAR. Am J Trop Med Hyg. 1964 Mar;13:265–271. doi: 10.4269/ajtmh.1964.13.265. [DOI] [PubMed] [Google Scholar]
  18. Reed S. G., Barral-Netto M., Inverso J. A. Treatment of experimental visceral leishmaniasis with lymphokine encapsulated in liposomes. J Immunol. 1984 Jun;132(6):3116–3119. [PubMed] [Google Scholar]
  19. Scott P. A., Farrell J. P. Experimental cutaneous leishmaniasis: disseminated leishmaniasis in genetically susceptible and resistant mice. Am J Trop Med Hyg. 1982 Mar;31(2):230–238. doi: 10.4269/ajtmh.1982.31.230. [DOI] [PubMed] [Google Scholar]
  20. Scott P. Impaired macrophage leishmanicidal activity at cutaneous temperature. Parasite Immunol. 1985 May;7(3):277–288. doi: 10.1111/j.1365-3024.1985.tb00076.x. [DOI] [PubMed] [Google Scholar]
  21. Stauber L. A. The origin and significance of the distribution of parasites in visceral leishmaniasis. Trans N Y Acad Sci. 1966 Mar;28(5):635–643. doi: 10.1111/j.2164-0947.1966.tb02382.x. [DOI] [PubMed] [Google Scholar]
  22. Tilney N. L. Patterns of lymphatic drainage in the adult laboratory rat. J Anat. 1971 Sep;109(Pt 3):369–383. [PMC free article] [PubMed] [Google Scholar]
  23. Ueda K., Yamazaki S., Yamamoto S., Someya S. Spleen cell transfer induces T cell-dependent granulomas in tuberculous nude mice. J Reticuloendothel Soc. 1982 Jun;31(6):469–478. [PubMed] [Google Scholar]
  24. Van Joost K. S., Sluiters J. F. Appearance of Leishmania donovani (Kenya strain) in the blood of experimentally infected golden hamsters (Mesocricetus auratus). Trop Geogr Med. 1972 Sep;24(3):292–297. [PubMed] [Google Scholar]
  25. Zuckerman A. Current status of the immunology of blood and tissue Protozoa. I. Leishmania. Exp Parasitol. 1975 Dec;38(3):370–400. doi: 10.1016/0014-4894(75)90123-x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES