Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1986 Jan;51(1):119–124. doi: 10.1128/iai.51.1.119-124.1986

Effect of endogenous phosphoenolpyruvate potential on fluoride inhibition of glucose uptake by Streptococcus mutans.

G R Germaine, L M Tellefson
PMCID: PMC261074  PMID: 3940992

Abstract

The fluoride sensitivity of glucose uptake by whole cell suspensions of Streptococcus mutans was studied. Preincubation of the organism with up to 1 mM glucose markedly reduced the fluoride sensitivity of subsequent glucose uptake at pH 7.0 and 5.5. Glucose preincubation was shown to result in the establishment of a stable pool of three-carbon glycolytic intermediates. On the basis of inhibition studies and thin-layer chromatography of cell extracts, we suggest that 3- and 2-phosphoglycerate are the principal constituents of the pool. Increased concentrations of glucose used in preincubation mixtures was associated with increased pool sizes of the glycolytic intermediates and increased fluoride resistance. Transport of 2-deoxy-D-glucose by permeabilized cells was inhibited by fluoride when 2-phoshoglycerate served as the energy source. Increased concentrations of 2-phosphoglycerate were shown to overcome the fluoride inhibition of transport. The data suggest that establishment of a stable pool of glycolytic intermediates that includes 2-phosphoglycerate (or its progenitors) may contribute significantly to the apparent refractoriness of plaque microbes to fluoride in vivo.

Full text

PDF
119

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender G. R., Thibodeau E. A., Marquis R. E. Reduction of acidurance of streptococcal growth and glycolysis by fluoride and gramicidin. J Dent Res. 1985 Feb;64(2):90–95. doi: 10.1177/00220345850640021701. [DOI] [PubMed] [Google Scholar]
  2. Bunick F. J., Kashket S. Enolases from fluoride-sensitive and fluoride-resistant streptococci. Infect Immun. 1981 Dec;34(3):856–863. doi: 10.1128/iai.34.3.856-863.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carlsson J., Iwami Y., Yamada T. Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide. Infect Immun. 1983 Apr;40(1):70–80. doi: 10.1128/iai.40.1.70-80.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cimasoni G. The inhibition of enolase by fluoride in vitro. Caries Res. 1972;6(2):93–102. doi: 10.1159/000259782. [DOI] [PubMed] [Google Scholar]
  5. Dills S. S., Apperson A., Schmidt M. R., Saier M. H., Jr Carbohydrate transport in bacteria. Microbiol Rev. 1980 Sep;44(3):385–418. doi: 10.1128/mr.44.3.385-418.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Germaine G. R., Tellefson L. M. Effect of human saliva on glucose uptake by Streptococcus mutans and other oral microorganisms. Infect Immun. 1981 Feb;31(2):598–607. doi: 10.1128/iai.31.2.598-607.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Germaine G. R., Tellefson L. M. Effect of human saliva on the fluoride sensitivity of glucose uptake by Streptococcus mutans. Infect Immun. 1981 Dec;34(3):871–879. doi: 10.1128/iai.34.3.871-879.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Germaine G. R., Tellefson L. M. Glucose uptake by Streptococcus mutans, Streptococcus mitis, and Actinomyces viscosus in the presence of human saliva. Infect Immun. 1982 Dec;38(3):1060–1067. doi: 10.1128/iai.38.3.1060-1067.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Germaine G. R., Tellefson L. M. Promotion of Streptococcus mutans glucose transport by human whole saliva and parotid fluid. Infect Immun. 1985 Apr;48(1):7–13. doi: 10.1128/iai.48.1.7-13.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Germaine G. R., Tellefson L. M. Simple filter paper procedure for estimation of glucose uptake via group translocation by whole-cell suspensions of bacteria. Appl Environ Microbiol. 1981 Mar;41(3):837–839. doi: 10.1128/aem.41.3.837-839.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamilton I. R. Effects of fluoride on enzymatic regulation of bacterial carbohydrate metabolism. Caries Res. 1977;11 (Suppl 1):262–291. doi: 10.1159/000260304. [DOI] [PubMed] [Google Scholar]
  12. Iwami Y., Yamada T. Rate-limiting steps of the glycolytic pathway in the oral bacteria Streptococcus mutans and Streptococcus sanguis and the influence of acidic pH on the glucose metabolism. Arch Oral Biol. 1980;25(3):163–169. doi: 10.1016/0003-9969(80)90015-1. [DOI] [PubMed] [Google Scholar]
  13. Jenkins G. N., Edgar W. M. Distribution and forms of F in saliva and plaque. Caries Res. 1977;11 (Suppl 1):226–242. doi: 10.1159/000260302. [DOI] [PubMed] [Google Scholar]
  14. Postma P. W., Lengeler J. W. Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. Microbiol Rev. 1985 Sep;49(3):232–269. doi: 10.1128/mr.49.3.232-269.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shannon I. L. Biochemistry of fluoride in saliva. Caries Res. 1977;11 (Suppl 1):206–225. doi: 10.1159/000260301. [DOI] [PubMed] [Google Scholar]
  16. Thompson J., Chassy B. M. Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-D-glucose uncouples energy production from growth. J Bacteriol. 1982 Sep;151(3):1454–1465. doi: 10.1128/jb.151.3.1454-1465.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thompson J., Saier M. H., Jr Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms. J Bacteriol. 1981 Jun;146(3):885–894. doi: 10.1128/jb.146.3.885-894.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Thompson J., Thomas T. D. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis. J Bacteriol. 1977 May;130(2):583–595. doi: 10.1128/jb.130.2.583-595.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thompson J., Torchia D. A. Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis. J Bacteriol. 1984 Jun;158(3):791–800. doi: 10.1128/jb.158.3.791-800.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Whitford G. M., Schuster G. S., Pashley D. H., Venkateswarlu P. Fluoride uptake by Streptococcus mutans 6715. Infect Immun. 1977 Dec;18(3):680–687. doi: 10.1128/iai.18.3.680-687.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES